# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING

from ...utils import (
    OptionalDependencyNotAvailable,
    _LazyModule,
    is_flax_available,
    is_tf_available,
    is_torch_available,
)


_import_structure = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]}

try:
    if not is_torch_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["modeling_vit_mae"] = [
        "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST",
        "ViTMAEForPreTraining",
        "ViTMAELayer",
        "ViTMAEModel",
        "ViTMAEPreTrainedModel",
    ]

try:
    if not is_tf_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["modeling_tf_vit_mae"] = [
        "TFViTMAEForPreTraining",
        "TFViTMAEModel",
        "TFViTMAEPreTrainedModel",
    ]

if TYPE_CHECKING:
    from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig

    try:
        if not is_torch_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .modeling_vit_mae import (
            VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
            ViTMAEForPreTraining,
            ViTMAELayer,
            ViTMAEModel,
            ViTMAEPreTrainedModel,
        )

    try:
        if not is_tf_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel


else:
    import sys

    sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
