U
    9%e$                     @   sT   d Z ddlmZ ddlmZ ddlmZmZ ee	Z
ddiZG dd deeZd	S )
z VitDet model configuration   )PretrainedConfig)logging)BackboneConfigMixin*get_aligned_output_features_output_indiceszfacebook/vit-det-basezEhttps://huggingface.co/facebook/vit-det-base/resolve/main/config.jsonc                       sP   e Zd ZdZdZdddddddd	d
d
ddddg g dddddf fdd	Z  ZS )VitDetConfiga3  
    This is the configuration class to store the configuration of a [`VitDetModel`]. It is used to instantiate an
    VitDet model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the VitDet
    [google/vitdet-base-patch16-224](https://huggingface.co/google/vitdet-base-patch16-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        mlp_ratio (`int`, *optional*, defaults to 4):
            Ratio of mlp hidden dim to embedding dim.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-6):
            The epsilon used by the layer normalization layers.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        pretrain_image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image during pretraining.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.
        drop_path_rate (`float`, *optional*, defaults to 0.0):
            Stochastic depth rate.
        window_block_indices (`List[int]`, *optional*):
            List of indices of blocks that should have window attention instead of regular global self-attention.
        residual_block_indices (`List[int]`, *optional*):
            List of indices of blocks that should have an extra residual block after the MLP.
        use_absolute_position_embeddings (`bool`, *optional*, defaults to `True`):
            Whether to add absolute position embeddings to the patch embeddings.
        use_relative_position_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to add relative position embeddings to the attention maps.
        window_size (`int`, *optional*, defaults to 0):
            The size of the attention window.
        out_features (`List[str]`, *optional*):
            If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
            (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
            corresponding stages. If unset and `out_indices` is unset, will default to the last stage.
        out_indices (`List[int]`, *optional*):
            If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
            many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
            If unset and `out_features` is unset, will default to the last stage.

    Example:

    ```python
    >>> from transformers import VitDetConfig, VitDetModel

    >>> # Initializing a VitDet configuration
    >>> configuration = VitDetConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = VitDetModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zvitdeti         Zgelug        g{Gz?gư>      r   TF    Nc                    s   t  jf | || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _|| _|| _|| _|| _dgdd td| jd D  | _t||| jd\| _| _d S )Nstemc                 S   s   g | ]}d | qS )Zstage ).0idxr   r   n/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/models/vitdet/configuration_vitdet.py
<listcomp>   s     z)VitDetConfig.__init__.<locals>.<listcomp>   )out_featuresout_indicesstage_names)super__init__hidden_sizenum_hidden_layersnum_attention_heads	mlp_ratio
hidden_actdropout_probinitializer_rangelayer_norm_eps
image_sizepretrain_image_size
patch_sizenum_channelsqkv_biasdrop_path_ratewindow_block_indicesresidual_block_indices use_absolute_position_embeddings use_relative_position_embeddingswindow_sizeranger   r   Z_out_featuresZ_out_indices)selfr   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r   r   kwargs	__class__r   r   r   i   s4    "  zVitDetConfig.__init__)__name__
__module____qualname____doc__Z
model_typer   __classcell__r   r   r.   r   r      s0   Hr   N)r3   Zconfiguration_utilsr   utilsr   Zutils.backbone_utilsr   r   Z
get_loggerr0   loggerZ$VITDET_PRETRAINED_CONFIG_ARCHIVE_MAPr   r   r   r   r   <module>   s   
 