U
    9%e.                     @   s   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 e
eZdd	d
dddddddd
ZG dd deZG dd deZdS )z XLM configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingz?https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.jsonzAhttps://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.jsonzAhttps://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.jsonzAhttps://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.jsonzGhttps://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.jsonzChttps://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.jsonzAhttps://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.jsonzAhttps://huggingface.co/xlm-clm-ende-1024/resolve/main/config.jsonz?https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.jsonz@https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json)
zxlm-mlm-en-2048zxlm-mlm-ende-1024zxlm-mlm-enfr-1024zxlm-mlm-enro-1024zxlm-mlm-tlm-xnli15-1024zxlm-mlm-xnli15-1024zxlm-clm-enfr-1024zxlm-clm-ende-1024zxlm-mlm-17-1280zxlm-mlm-100-1280c                !       s4   e Zd ZdZdZdddddZd fdd	Z  ZS )	XLMConfiga  
    This is the configuration class to store the configuration of a [`XLMModel`] or a [`TFXLMModel`]. It is used to
    instantiate a XLM model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the
    [xlm-mlm-en-2048](https://huggingface.co/xlm-mlm-en-2048) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 30145):
            Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`XLMModel`] or [`TFXLMModel`].
        emb_dim (`int`, *optional*, defaults to 2048):
            Dimensionality of the encoder layers and the pooler layer.
        n_layer (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        n_head (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for the attention mechanism
        gelu_activation (`bool`, *optional*, defaults to `True`):
            Whether or not to use *gelu* for the activations instead of *relu*.
        sinusoidal_embeddings (`bool`, *optional*, defaults to `False`):
            Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings.
        causal (`bool`, *optional*, defaults to `False`):
            Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask in
            order to only attend to the left-side context instead if a bidirectional context.
        asm (`bool`, *optional*, defaults to `False`):
            Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction
            layer.
        n_langs (`int`, *optional*, defaults to 1):
            The number of languages the model handles. Set to 1 for monolingual models.
        use_lang_emb (`bool`, *optional*, defaults to `True`)
            Whether to use language embeddings. Some models use additional language embeddings, see [the multilingual
            models page](http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings) for information
            on how to use them.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        embed_init_std (`float`, *optional*, defaults to 2048^-0.5):
            The standard deviation of the truncated_normal_initializer for initializing the embedding matrices.
        init_std (`int`, *optional*, defaults to 50257):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the
            embedding matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        bos_index (`int`, *optional*, defaults to 0):
            The index of the beginning of sentence token in the vocabulary.
        eos_index (`int`, *optional*, defaults to 1):
            The index of the end of sentence token in the vocabulary.
        pad_index (`int`, *optional*, defaults to 2):
            The index of the padding token in the vocabulary.
        unk_index (`int`, *optional*, defaults to 3):
            The index of the unknown token in the vocabulary.
        mask_index (`int`, *optional*, defaults to 5):
            The index of the masking token in the vocabulary.
        is_encoder(`bool`, *optional*, defaults to `True`):
            Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al.
        summary_type (`string`, *optional*, defaults to "first"):
            Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.

            Has to be one of the following options:

                - `"last"`: Take the last token hidden state (like XLNet).
                - `"first"`: Take the first token hidden state (like BERT).
                - `"mean"`: Take the mean of all tokens hidden states.
                - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
                - `"attn"`: Not implemented now, use multi-head attention.
        summary_use_proj (`bool`, *optional*, defaults to `True`):
            Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.

            Whether or not to add a projection after the vector extraction.
        summary_activation (`str`, *optional*):
            Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.

            Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
        summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
            Used in the sequence classification and multiple choice models.

            Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
        summary_first_dropout (`float`, *optional*, defaults to 0.1):
            Used in the sequence classification and multiple choice models.

            The dropout ratio to be used after the projection and activation.
        start_n_top (`int`, *optional*, defaults to 5):
            Used in the SQuAD evaluation script.
        end_n_top (`int`, *optional*, defaults to 5):
            Used in the SQuAD evaluation script.
        mask_token_id (`int`, *optional*, defaults to 0):
            Model agnostic parameter to identify masked tokens when generating text in an MLM context.
        lang_id (`int`, *optional*, defaults to 1):
            The ID of the language used by the model. This parameter is used when generating text in a given language.

    Examples:

    ```python
    >>> from transformers import XLMConfig, XLMModel

    >>> # Initializing a XLM configuration
    >>> configuration = XLMConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = XLMModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zxlmemb_dimn_headsn_layers
vocab_size)Zhidden_sizeZnum_attention_headsZnum_hidden_layersn_wordsu           皙?TF      ;f?-q={Gz?r      r      firstNc"           #         s   || _ || _|| _|| _|| _|| _|| _|| _|	| _|
| _	|| _
|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _d|"kr|"d | _t  j!f | |!d|" dS )zConstructs XLMConfig.r   )pad_token_idbos_token_idN)"r   r	   r   r
   dropoutattention_dropoutgelu_activationsinusoidal_embeddingscausalasmn_langsuse_lang_emblayer_norm_eps	bos_index	eos_index	pad_index	unk_index
mask_index
is_encodermax_position_embeddingsembed_init_stdinit_stdsummary_typesummary_use_projsummary_activationsummary_proj_to_labelssummary_first_dropoutstart_n_top	end_n_topmask_token_idlang_idr   super__init__)#selfr   r	   r   r
   r   r   r   r    r!   r"   r#   r$   r,   r-   r%   r.   r&   r'   r(   r)   r*   r+   r/   r0   r1   r2   r3   r4   r5   r6   r7   r   r   kwargs	__class__ h/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/models/xlm/configuration_xlm.pyr9      sD    &
zXLMConfig.__init__)!r   r   r   r   r   r   TFFFr   Tr   r   r   r   r   r   r   r   r   Tr   TNTr   r   r   r   r   r   r   )__name__
__module____qualname____doc__Z
model_typeZattribute_mapr9   __classcell__r>   r>   r<   r?   r   (   sR   o	                                 r   c                   @   s.   e Zd Zeeeeeef f dddZdS )XLMOnnxConfig)returnc                 C   s<   | j dkrdddd}n
ddd}td|fd|fd	|fgS )
Nzmultiple-choicebatchchoicesequence)r   r   r   )r   r   Z	input_idsZattention_maskZtoken_type_ids)taskr   )r:   Zdynamic_axisr>   r>   r?   inputs   s    

zXLMOnnxConfig.inputsN)r@   rA   rB   propertyr   strintrK   r>   r>   r>   r?   rE      s   rE   N)rC   collectionsr   typingr   Zconfiguration_utilsr   Zonnxr   utilsr   Z
get_loggerr@   loggerZ!XLM_PRETRAINED_CONFIG_ARCHIVE_MAPr   rE   r>   r>   r>   r?   <module>   s(   
 F