U
    9%e                     @   s   d dl mZmZmZmZ ddlmZmZmZm	Z	m
Z
 ddlmZmZ e rVddlmZ e rtd dlZddlmZmZ e	eZeeef Zee ZeeG d	d
 d
eZdS )    )AnyDictListUnion   )add_end_docstringsis_torch_availableis_vision_availableloggingrequires_backends   )PIPELINE_INIT_ARGSPipeline)
load_imageN)(MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMESc                       sz   e Zd ZdZ fddZdd Zeeee	 f d fddZ
dd
dZdd ZdddZdeeef dddZ  ZS )ObjectDetectionPipelinea  
    Object detection pipeline using any `AutoModelForObjectDetection`. This pipeline predicts bounding boxes of objects
    and their classes.

    Example:

    ```python
    >>> from transformers import pipeline

    >>> detector = pipeline(model="facebook/detr-resnet-50")
    >>> detector("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png")
    [{'score': 0.997, 'label': 'bird', 'box': {'xmin': 69, 'ymin': 171, 'xmax': 396, 'ymax': 507}}, {'score': 0.999, 'label': 'bird', 'box': {'xmin': 398, 'ymin': 105, 'xmax': 767, 'ymax': 507}}]

    >>> # x, y  are expressed relative to the top left hand corner.
    ```

    Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)

    This object detection pipeline can currently be loaded from [`pipeline`] using the following task identifier:
    `"object-detection"`.

    See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=object-detection).
    c                    sT   t  j|| | jdkr*td| j dt| d t }|t	 | 
| d S )NtfzThe z is only available in PyTorch.Zvision)super__init__	framework
ValueError	__class__r   r   copyupdater   Zcheck_model_type)selfargskwargsmappingr    f/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/pipelines/object_detection.pyr   4   s    


z ObjectDetectionPipeline.__init__c                 K   s:   i }d|kr|d |d< i }d|kr0|d |d< |i |fS )Ntimeout	thresholdr    )r   r   Zpreprocess_paramsZpostprocess_kwargsr    r    r!   _sanitize_parameters?   s    z,ObjectDetectionPipeline._sanitize_parameters)returnc                    s   t  j||S )ai  
        Detect objects (bounding boxes & classes) in the image(s) passed as inputs.

        Args:
            images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
                The pipeline handles three types of images:

                - A string containing an HTTP(S) link pointing to an image
                - A string containing a local path to an image
                - An image loaded in PIL directly

                The pipeline accepts either a single image or a batch of images. Images in a batch must all be in the
                same format: all as HTTP(S) links, all as local paths, or all as PIL images.
            threshold (`float`, *optional*, defaults to 0.9):
                The probability necessary to make a prediction.
            timeout (`float`, *optional*, defaults to None):
                The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
                the call may block forever.

        Return:
            A list of dictionaries or a list of list of dictionaries containing the result. If the input is a single
            image, will return a list of dictionaries, if the input is a list of several images, will return a list of
            list of dictionaries corresponding to each image.

            The dictionaries contain the following keys:

            - **label** (`str`) -- The class label identified by the model.
            - **score** (`float`) -- The score attributed by the model for that label.
            - **box** (`List[Dict[str, int]]`) -- The bounding box of detected object in image's original size.
        )r   __call__)r   r   r   r   r    r!   r&   H   s     z ObjectDetectionPipeline.__call__Nc                 C   s^   t ||d}t|j|jgg}| j|gdd}| jd k	rR| j|d |d dd}||d< |S )N)r"   pt)Zimagesreturn_tensorswordsboxes)textr*   r(   target_size)r   torchZ	IntTensorheightwidthimage_processor	tokenizer)r   imager"   r,   inputsr    r    r!   
preprocessj   s    
z"ObjectDetectionPipeline.preprocessc                 C   sB   | d}| jf |}|d|i|}| jd k	r>|d |d< |S )Nr,   bbox)popmodelr   r1   )r   Zmodel_inputsr,   outputsmodel_outputsr    r    r!   _forwards   s    

z ObjectDetectionPipeline._forward?c                    sN  |d }j d k	r|d  \  fdd|d djddjdd\}}fdd	| D }fd
d	|d dD }dddgfdd	t| ||D }nj||}	|	d }
|
d }|
d }|
d }| |
d< fdd	|D |
d< fdd	|D |
d< dddgfdd	t|
d |
d |
d D }|S )Nr,   r   c              
      sH    t| d  d  | d  d | d  d  | d  d gS )Nr   i  r   r      )_get_bounding_boxr-   ZTensor)r5   )r.   r   r/   r    r!   unnormalize   s    z8ObjectDetectionPipeline.postprocess.<locals>.unnormalizeZlogits)dimc                    s   g | ]} j jj| qS r    )r7   configid2label).0Z
predictionr   r    r!   
<listcomp>   s     z7ObjectDetectionPipeline.postprocess.<locals>.<listcomp>c                    s   g | ]} |qS r    r    )rC   r5   )r>   r    r!   rE      s     r5   Zscorelabelboxc                    s&   g | ]}|d  krt t |qS )r   dictziprC   vals)keysr#   r    r!   rE      s      scoreslabelsr*   c                    s   g | ]} j jj|  qS r    )r7   rA   rB   item)rC   rF   rD   r    r!   rE      s     c                    s   g | ]}  |qS r    )r=   )rC   rG   rD   r    r!   rE      s     c                    s   g | ]}t t |qS r    rH   rK   )rM   r    r!   rE      s   )r1   tolistZsqueezeZsoftmaxmaxrJ   r0   Zpost_process_object_detection)r   r9   r#   r,   rN   classesrO   r*   
annotationZraw_annotationsZraw_annotationr    )r.   rM   r   r#   r>   r/   r!   postprocess{   s,    
"
"

z#ObjectDetectionPipeline.postprocessztorch.Tensor)rG   r%   c                 C   s8   | j dkrtd|  \}}}}||||d}|S )a%  
        Turns list [xmin, xmax, ymin, ymax] into dict { "xmin": xmin, ... }

        Args:
            box (`torch.Tensor`): Tensor containing the coordinates in corners format.

        Returns:
            bbox (`Dict[str, int]`): Dict containing the coordinates in corners format.
        r'   z9The ObjectDetectionPipeline is only available in PyTorch.)xminyminxmaxymax)r   r   intrQ   )r   rG   rV   rW   rX   rY   r5   r    r    r!   r=      s    

z)ObjectDetectionPipeline._get_bounding_box)N)r;   )__name__
__module____qualname____doc__r   r$   r   Predictionsr   
Predictionr&   r4   r:   rU   r   strrZ   r=   __classcell__r    r    r   r!   r      s   	"
	
-r   )typingr   r   r   r   utilsr   r   r	   r
   r   baser   r   Zimage_utilsr   r-   Zmodels.auto.modeling_autor   r   Z
get_loggerr[   loggerra   r`   r_   r   r    r    r    r!   <module>   s   
