U
    9%e5                     @   sn  d Z ddlZddlZddlZdd Zdd Zdd Zd	Zd
Zdd Z	dd Z
d@ddZdZdZdZdZdZdZdZdZdZdZdZdZdZdZdZeeeeeeeeeeeeeed Zd!Zd"Zd#Zd$Zd%Z d&Z!d'Z"d(Z#d)Z$d*Z%d+Z&eeee!ee"e e#e$e%e&d,Z'd-Z(d.Z)d-Z*d/Z+d0Z,d1Z-d2Z.e*e)e(e-e+e,e.d3Z/d4d5 Z0ddddd6d7d8dddddd9d:d;Z1dAd<d=Z2d>d? Z3dS )Bz3
Doc utilities: Utilities related to documentation
    Nc                     s    fdd}|S )Nc                    s$   d  | jd k	r| jnd | _| S N )join__doc__fndocstr U/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/utils/doc.pydocstring_decorator   s     z1add_start_docstrings.<locals>.docstring_decoratorr
   r	   r   r
   r   r   add_start_docstrings   s    r   c                     s    fdd}|S )Nc                    sX   d  | jd k	r| jnd }d| jdd  d}d| d}d}|| | | _| S )	Nr   z[`.r   z`]z   The z9 forward method, overrides the `__call__` special method.a(  

    <Tip>

    Although the recipe for forward pass needs to be defined within this function, one should call the [`Module`]
    instance afterwards instead of this since the former takes care of running the pre and post processing steps while
    the latter silently ignores them.

    </Tip>
)r   r   __qualname__split)r   	docstring
class_nameintroZnoter   r
   r   r       s    zBadd_start_docstrings_to_model_forward.<locals>.docstring_decoratorr
   r   r
   r   r   %add_start_docstrings_to_model_forward   s    r   c                     s    fdd}|S )Nc                    s$   | j d k	r| j ndd  | _ | S r   )r   r   r   r   r
   r   r   6   s     z/add_end_docstrings.<locals>.docstring_decoratorr
   r   r
   r   r   add_end_docstrings5   s    r   a:  
    Returns:
        [`{full_output_type}`] or `tuple(torch.FloatTensor)`: A [`{full_output_type}`] or a tuple of
        `torch.FloatTensor` (if `return_dict=False` is passed or when `config.return_dict=False`) comprising various
        elements depending on the configuration ([`{config_class}`]) and inputs.

a*  
    Returns:
        [`{full_output_type}`] or `tuple(tf.Tensor)`: A [`{full_output_type}`] or a tuple of `tf.Tensor` (if
        `return_dict=False` is passed or when `config.return_dict=False`) comprising various elements depending on the
        configuration ([`{config_class}`]) and inputs.

c                 C   s$   t d| }|dkrdS | d S )z.Returns the indentation in the first line of tz^(\s*)\SNr   r   )researchgroups)tr   r
   r
   r   _get_indentO   s    r   c                 C   s   t | }g }d}| dD ]P}t ||krTt|dkrH||dd  | d}q||dd  d7 }q||dd  tt|D ]0}tdd|| ||< td	d
|| ||< qd|S )z,Convert output_args_doc to display properly.r   
r   N   z^(\s+)(\S+)(\s+)z\1- **\2**\3z:\s*\n\s*(\S)z -- \1)r   r   lenappendranger   subr   )Zoutput_args_docindentblocksZcurrent_blocklineir
   r
   r   _convert_output_args_docU   s    r'   c                    s0  | j }|d}d}|t|k r>td|| dkr>|d7 }q|t|k rjd||d d }t|}ntd| j d| j	 d| j }| j
d	rtnt}|j||d
}|| }	|dk	r,|	d}d}t|| dkr|d7 }qtt|| }
|
|k r,d||
    fdd|D }d|}	|	S )zH
    Prepares the return part of the docstring using `output_type`.
    r   r   z^\s*(Args|Parameters):\s*$N   z@No `Args` or `Parameters` section is found in the docstring of `zG`. Make sure it hasdocstring and contain either `Args` or `Parameters`.r   TF)full_output_typeconfig_class c                    s(   g | ] }t |d kr   | n|qS )r   )r   ).0r%   Zto_addr
   r   
<listcomp>   s     z._prepare_output_docstrings.<locals>.<listcomp>)r   r   r   r   r   r   r'   
ValueError__name__
__module__
startswithTF_RETURN_INTRODUCTIONPT_RETURN_INTRODUCTIONformatr   )output_typer+   
min_indentZoutput_docstringlinesr&   Zparams_docstringr*   r   resultr#   r
   r.   r   _prepare_output_docstringso   s4    
 






r;   aJ  
    <Tip warning={true}>

    This example uses a random model as the real ones are all very big. To get proper results, you should use
    {real_checkpoint} instead of {fake_checkpoint}. If you get out-of-memory when loading that checkpoint, you can try
    adding `device_map="auto"` in the `from_pretrained` call.

    </Tip>
a  
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import torch

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer(
    ...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
    ... )

    >>> with torch.no_grad():
    ...     logits = model(**inputs).logits

    >>> predicted_token_class_ids = logits.argmax(-1)

    >>> # Note that tokens are classified rather then input words which means that
    >>> # there might be more predicted token classes than words.
    >>> # Multiple token classes might account for the same word
    >>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
    >>> predicted_tokens_classes
    {expected_output}

    >>> labels = predicted_token_class_ids
    >>> loss = model(**inputs, labels=labels).loss
    >>> round(loss.item(), 2)
    {expected_loss}
    ```
a_  
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import torch

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

    >>> inputs = tokenizer(question, text, return_tensors="pt")
    >>> with torch.no_grad():
    ...     outputs = model(**inputs)

    >>> answer_start_index = outputs.start_logits.argmax()
    >>> answer_end_index = outputs.end_logits.argmax()

    >>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
    >>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
    {expected_output}

    >>> # target is "nice puppet"
    >>> target_start_index = torch.tensor([{qa_target_start_index}])
    >>> target_end_index = torch.tensor([{qa_target_end_index}])

    >>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
    >>> loss = outputs.loss
    >>> round(loss.item(), 2)
    {expected_loss}
    ```
a  
    Example of single-label classification:

    ```python
    >>> import torch
    >>> from transformers import AutoTokenizer, {model_class}

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

    >>> with torch.no_grad():
    ...     logits = model(**inputs).logits

    >>> predicted_class_id = logits.argmax().item()
    >>> model.config.id2label[predicted_class_id]
    {expected_output}

    >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
    >>> num_labels = len(model.config.id2label)
    >>> model = {model_class}.from_pretrained("{checkpoint}", num_labels=num_labels)

    >>> labels = torch.tensor([1])
    >>> loss = model(**inputs, labels=labels).loss
    >>> round(loss.item(), 2)
    {expected_loss}
    ```

    Example of multi-label classification:

    ```python
    >>> import torch
    >>> from transformers import AutoTokenizer, {model_class}

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}", problem_type="multi_label_classification")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

    >>> with torch.no_grad():
    ...     logits = model(**inputs).logits

    >>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

    >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
    >>> num_labels = len(model.config.id2label)
    >>> model = {model_class}.from_pretrained(
    ...     "{checkpoint}", num_labels=num_labels, problem_type="multi_label_classification"
    ... )

    >>> labels = torch.sum(
    ...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
    ... ).to(torch.float)
    >>> loss = model(**inputs, labels=labels).loss
    ```
a   
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import torch

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="pt")

    >>> with torch.no_grad():
    ...     logits = model(**inputs).logits

    >>> # retrieve index of {mask}
    >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

    >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
    >>> tokenizer.decode(predicted_token_id)
    {expected_output}

    >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
    >>> # mask labels of non-{mask} tokens
    >>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

    >>> outputs = model(**inputs, labels=labels)
    >>> round(outputs.loss.item(), 2)
    {expected_loss}
    ```
a  
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import torch

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
    >>> outputs = model(**inputs)

    >>> last_hidden_states = outputs.last_hidden_state
    ```
a  
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import torch

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
    >>> choice0 = "It is eaten with a fork and a knife."
    >>> choice1 = "It is eaten while held in the hand."
    >>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

    >>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
    >>> outputs = model(**{{k: v.unsqueeze(0) for k, v in encoding.items()}}, labels=labels)  # batch size is 1

    >>> # the linear classifier still needs to be trained
    >>> loss = outputs.loss
    >>> logits = outputs.logits
    ```
a  
    Example:

    ```python
    >>> import torch
    >>> from transformers import AutoTokenizer, {model_class}

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
    >>> outputs = model(**inputs, labels=inputs["input_ids"])
    >>> loss = outputs.loss
    >>> logits = outputs.logits
    ```
aA  
    Example:

    ```python
    >>> from transformers import AutoProcessor, {model_class}
    >>> import torch
    >>> from datasets import load_dataset

    >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
    >>> dataset = dataset.sort("id")
    >>> sampling_rate = dataset.features["audio"].sampling_rate

    >>> processor = AutoProcessor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> # audio file is decoded on the fly
    >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
    >>> with torch.no_grad():
    ...     outputs = model(**inputs)

    >>> last_hidden_states = outputs.last_hidden_state
    >>> list(last_hidden_states.shape)
    {expected_output}
    ```
a]  
    Example:

    ```python
    >>> from transformers import AutoProcessor, {model_class}
    >>> from datasets import load_dataset
    >>> import torch

    >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
    >>> dataset = dataset.sort("id")
    >>> sampling_rate = dataset.features["audio"].sampling_rate

    >>> processor = AutoProcessor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> # audio file is decoded on the fly
    >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
    >>> with torch.no_grad():
    ...     logits = model(**inputs).logits
    >>> predicted_ids = torch.argmax(logits, dim=-1)

    >>> # transcribe speech
    >>> transcription = processor.batch_decode(predicted_ids)
    >>> transcription[0]
    {expected_output}

    >>> inputs["labels"] = processor(text=dataset[0]["text"], return_tensors="pt").input_ids

    >>> # compute loss
    >>> loss = model(**inputs).loss
    >>> round(loss.item(), 2)
    {expected_loss}
    ```
a  
    Example:

    ```python
    >>> from transformers import AutoFeatureExtractor, {model_class}
    >>> from datasets import load_dataset
    >>> import torch

    >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
    >>> dataset = dataset.sort("id")
    >>> sampling_rate = dataset.features["audio"].sampling_rate

    >>> feature_extractor = AutoFeatureExtractor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> # audio file is decoded on the fly
    >>> inputs = feature_extractor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")

    >>> with torch.no_grad():
    ...     logits = model(**inputs).logits

    >>> predicted_class_ids = torch.argmax(logits, dim=-1).item()
    >>> predicted_label = model.config.id2label[predicted_class_ids]
    >>> predicted_label
    {expected_output}

    >>> # compute loss - target_label is e.g. "down"
    >>> target_label = model.config.id2label[0]
    >>> inputs["labels"] = torch.tensor([model.config.label2id[target_label]])
    >>> loss = model(**inputs).loss
    >>> round(loss.item(), 2)
    {expected_loss}
    ```
a  
    Example:

    ```python
    >>> from transformers import AutoFeatureExtractor, {model_class}
    >>> from datasets import load_dataset
    >>> import torch

    >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
    >>> dataset = dataset.sort("id")
    >>> sampling_rate = dataset.features["audio"].sampling_rate

    >>> feature_extractor = AutoFeatureExtractor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> # audio file is decoded on the fly
    >>> inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt", sampling_rate=sampling_rate)
    >>> with torch.no_grad():
    ...     logits = model(**inputs).logits

    >>> probabilities = torch.sigmoid(logits[0])
    >>> # labels is a one-hot array of shape (num_frames, num_speakers)
    >>> labels = (probabilities > 0.5).long()
    >>> labels[0].tolist()
    {expected_output}
    ```
a  
    Example:

    ```python
    >>> from transformers import AutoFeatureExtractor, {model_class}
    >>> from datasets import load_dataset
    >>> import torch

    >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
    >>> dataset = dataset.sort("id")
    >>> sampling_rate = dataset.features["audio"].sampling_rate

    >>> feature_extractor = AutoFeatureExtractor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> # audio file is decoded on the fly
    >>> inputs = feature_extractor(
    ...     [d["array"] for d in dataset[:2]["audio"]], sampling_rate=sampling_rate, return_tensors="pt", padding=True
    ... )
    >>> with torch.no_grad():
    ...     embeddings = model(**inputs).embeddings

    >>> embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu()

    >>> # the resulting embeddings can be used for cosine similarity-based retrieval
    >>> cosine_sim = torch.nn.CosineSimilarity(dim=-1)
    >>> similarity = cosine_sim(embeddings[0], embeddings[1])
    >>> threshold = 0.7  # the optimal threshold is dataset-dependent
    >>> if similarity < threshold:
    ...     print("Speakers are not the same!")
    >>> round(similarity.item(), 2)
    {expected_output}
    ```
a  
    Example:

    ```python
    >>> from transformers import AutoImageProcessor, {model_class}
    >>> import torch
    >>> from datasets import load_dataset

    >>> dataset = load_dataset("huggingface/cats-image")
    >>> image = dataset["test"]["image"][0]

    >>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = image_processor(image, return_tensors="pt")

    >>> with torch.no_grad():
    ...     outputs = model(**inputs)

    >>> last_hidden_states = outputs.last_hidden_state
    >>> list(last_hidden_states.shape)
    {expected_output}
    ```
a  
    Example:

    ```python
    >>> from transformers import AutoImageProcessor, {model_class}
    >>> import torch
    >>> from datasets import load_dataset

    >>> dataset = load_dataset("huggingface/cats-image")
    >>> image = dataset["test"]["image"][0]

    >>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = image_processor(image, return_tensors="pt")

    >>> with torch.no_grad():
    ...     logits = model(**inputs).logits

    >>> # model predicts one of the 1000 ImageNet classes
    >>> predicted_label = logits.argmax(-1).item()
    >>> print(model.config.id2label[predicted_label])
    {expected_output}
    ```
)SequenceClassificationQuestionAnsweringTokenClassificationMultipleChoiceMaskedLMLMHead	BaseModelSpeechBaseModelCTCAudioClassificationAudioFrameClassificationAudioXVectorVisionBaseModelImageClassificationaI  
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import tensorflow as tf

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer(
    ...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
    ... )

    >>> logits = model(**inputs).logits
    >>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)

    >>> # Note that tokens are classified rather then input words which means that
    >>> # there might be more predicted token classes than words.
    >>> # Multiple token classes might account for the same word
    >>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
    >>> predicted_tokens_classes
    {expected_output}
    ```

    ```python
    >>> labels = predicted_token_class_ids
    >>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss)
    >>> round(float(loss), 2)
    {expected_loss}
    ```
a  
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import tensorflow as tf

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

    >>> inputs = tokenizer(question, text, return_tensors="tf")
    >>> outputs = model(**inputs)

    >>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
    >>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])

    >>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
    >>> tokenizer.decode(predict_answer_tokens)
    {expected_output}
    ```

    ```python
    >>> # target is "nice puppet"
    >>> target_start_index = tf.constant([{qa_target_start_index}])
    >>> target_end_index = tf.constant([{qa_target_end_index}])

    >>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
    >>> loss = tf.math.reduce_mean(outputs.loss)
    >>> round(float(loss), 2)
    {expected_loss}
    ```
a  
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import tensorflow as tf

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")

    >>> logits = model(**inputs).logits

    >>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
    >>> model.config.id2label[predicted_class_id]
    {expected_output}
    ```

    ```python
    >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
    >>> num_labels = len(model.config.id2label)
    >>> model = {model_class}.from_pretrained("{checkpoint}", num_labels=num_labels)

    >>> labels = tf.constant(1)
    >>> loss = model(**inputs, labels=labels).loss
    >>> round(float(loss), 2)
    {expected_loss}
    ```
a4  
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import tensorflow as tf

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="tf")
    >>> logits = model(**inputs).logits

    >>> # retrieve index of {mask}
    >>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
    >>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)

    >>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
    >>> tokenizer.decode(predicted_token_id)
    {expected_output}
    ```

    ```python
    >>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
    >>> # mask labels of non-{mask} tokens
    >>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

    >>> outputs = model(**inputs, labels=labels)
    >>> round(float(outputs.loss), 2)
    {expected_loss}
    ```
a  
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import tensorflow as tf

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
    >>> outputs = model(inputs)

    >>> last_hidden_states = outputs.last_hidden_state
    ```
a#  
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import tensorflow as tf

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
    >>> choice0 = "It is eaten with a fork and a knife."
    >>> choice1 = "It is eaten while held in the hand."

    >>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
    >>> inputs = {{k: tf.expand_dims(v, 0) for k, v in encoding.items()}}
    >>> outputs = model(inputs)  # batch size is 1

    >>> # the linear classifier still needs to be trained
    >>> logits = outputs.logits
    ```
a  
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}
    >>> import tensorflow as tf

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
    >>> outputs = model(inputs)
    >>> logits = outputs.logits
    ```
a
  
    Example:

    ```python
    >>> from transformers import AutoProcessor, {model_class}
    >>> from datasets import load_dataset

    >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
    >>> dataset = dataset.sort("id")
    >>> sampling_rate = dataset.features["audio"].sampling_rate

    >>> processor = AutoProcessor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> # audio file is decoded on the fly
    >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="tf")
    >>> outputs = model(**inputs)

    >>> last_hidden_states = outputs.last_hidden_state
    >>> list(last_hidden_states.shape)
    {expected_output}
    ```
a_  
    Example:

    ```python
    >>> from transformers import AutoProcessor, {model_class}
    >>> from datasets import load_dataset
    >>> import tensorflow as tf

    >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
    >>> dataset = dataset.sort("id")
    >>> sampling_rate = dataset.features["audio"].sampling_rate

    >>> processor = AutoProcessor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> # audio file is decoded on the fly
    >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="tf")
    >>> logits = model(**inputs).logits
    >>> predicted_ids = tf.math.argmax(logits, axis=-1)

    >>> # transcribe speech
    >>> transcription = processor.batch_decode(predicted_ids)
    >>> transcription[0]
    {expected_output}
    ```

    ```python
    >>> inputs["labels"] = processor(text=dataset[0]["text"], return_tensors="tf").input_ids

    >>> # compute loss
    >>> loss = model(**inputs).loss
    >>> round(float(loss), 2)
    {expected_loss}
    ```
aY  
    Example:

    ```python
    >>> from transformers import AutoImageProcessor, {model_class}
    >>> from datasets import load_dataset

    >>> dataset = load_dataset("huggingface/cats-image")
    >>> image = dataset["test"]["image"][0]

    >>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = image_processor(image, return_tensors="tf")
    >>> outputs = model(**inputs)

    >>> last_hidden_states = outputs.last_hidden_state
    >>> list(last_hidden_states.shape)
    {expected_output}
    ```
a  
    Example:

    ```python
    >>> from transformers import AutoImageProcessor, {model_class}
    >>> import tensorflow as tf
    >>> from datasets import load_dataset

    >>> dataset = load_dataset("huggingface/cats-image")
    >>> image = dataset["test"]["image"][0]

    >>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = image_processor(image, return_tensors="tf")
    >>> logits = model(**inputs).logits

    >>> # model predicts one of the 1000 ImageNet classes
    >>> predicted_label = int(tf.math.argmax(logits, axis=-1))
    >>> print(model.config.id2label[predicted_label])
    {expected_output}
    ```
)r<   r=   r>   r?   r@   rA   rB   rC   rD   rH   rI   ar  
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")

    >>> outputs = model(**inputs)
    >>> logits = outputs.logits
    ```
a  
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
    >>> inputs = tokenizer(question, text, return_tensors="jax")

    >>> outputs = model(**inputs)
    >>> start_scores = outputs.start_logits
    >>> end_scores = outputs.end_logits
    ```
a}  
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="jax")

    >>> outputs = model(**inputs)
    >>> logits = outputs.logits
    ```
a  
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
    >>> outputs = model(**inputs)

    >>> last_hidden_states = outputs.last_hidden_state
    ```
a  
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
    >>> choice0 = "It is eaten with a fork and a knife."
    >>> choice1 = "It is eaten while held in the hand."

    >>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
    >>> outputs = model(**{{k: v[None, :] for k, v in encoding.items()}})

    >>> logits = outputs.logits
    ```
a  
    Example:

    ```python
    >>> from transformers import AutoTokenizer, {model_class}

    >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
    >>> model = {model_class}.from_pretrained("{checkpoint}")

    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
    >>> outputs = model(**inputs)

    >>> # retrieve logts for next token
    >>> next_token_logits = outputs.logits[:, -1]
    ```
)r<   r=   r>   r?   r@   rB   rA   c                 K   sB   |  D ]4\}}|dk	rqd| d }td| dd| } q| S )zo
    Removes the lines testing an output with the doctest syntax in a code sample when it's set to `None`.
    N{}z\n([^\n]+)\n\s+z\nr   )itemsr   r"   )r   kwargskeyvalueZdoc_keyr
   r
   r   filter_outputs_from_example  s    rP   z[MASK]      )processor_class
checkpointr7   r+   maskqa_target_start_indexqa_target_end_index	model_clsmodalityexpected_outputexpected_lossreal_checkpointc                    s(    	
fdd}|S )Nc                    s@  d kr| j dd n}|d d dkr2t}n|d d dkrHt}nt}|	 
 dd}d	|ksxd
|krdkr|d
 }nHd	|kr|d	 }n4d|kr|d }n d|kr|d }nd|kr|d }nd|ks|dkr|d }nd|ksd|kr|d }nd|kr&|d }nd|kr:|d }nd|krXdkrX|d }n|d|krvdkrv|d }n^d|krdkr|d }n@d|ksd|kr|d }n"d|kr|d }ntd| t|d}d k	rt| }| jpd d 	 }d krd nt
}|jf |}|| | | _| S )!Nr   r   r   r)      ZFlaxz{true})model_classrS   rT   rU   rV   rW   rZ   r[   r\   Zfake_checkpointtruer<   rE   Zaudior=   r>   r?   r@   )ZFlaubertWithLMHeadModelZXLMWithLMHeadModelrA   ZCausalLMrD   rF   ZXVectorrG   ZModelrC   ZvisionrH   ZEncoderrB   rI   z#Docstring can't be built for model )rZ   r[   r   )r   r   TF_SAMPLE_DOCSTRINGSFLAX_SAMPLE_DOCSTRINGSPT_SAMPLE_DOCSTRINGSr0   rP   FAKE_MODEL_DISCLAIMERr   r   r;   r6   )r   r^   Zsample_docstringsZ
doc_kwargsZcode_samplefunc_docZ
output_docZ	built_docrT   r+   r	   r[   rZ   rU   rY   rX   r7   rS   rW   rV   r\   r
   r   r   7  sv    












  
z7add_code_sample_docstrings.<locals>.docstring_decoratorr
   )rS   rT   r7   r+   rU   rV   rW   rX   rY   rZ   r[   r\   r	   r   r
   re   r   add_code_sample_docstrings(  s    $Frf   c                    s    fdd}|S )Nc                    s   | j }|d}d}|t|k r>td|| d kr>|d7 }q|t|k rxtt|| }t |d||< d|}ntd|  d| || _ | S )Nr   r   z^\s*Returns?:\s*$r(   )r8   zThe function ze should have an empty 'Return:' or 'Returns:' in its docstring as placeholder, current docstring is:
)	r   r   r   r   r   r   r;   r   r0   )r   rd   r9   r&   r#   r+   r7   r
   r   r     s    
 
z6replace_return_docstrings.<locals>.docstring_decoratorr
   )r7   r+   r   r
   rg   r   replace_return_docstrings  s    rh   c                 C   s6   t j| j| j| j| j| jd}t|| }| j	|_	|S )zReturns a copy of a function f.)nameZargdefsclosure)
typesFunctionType__code____globals__r1   __defaults____closure__	functoolsupdate_wrapper__kwdefaults__)fgr
   r
   r   	copy_func  s    rv   )N)NN)4r   rq   r   rk   r   r   r   r5   r4   r   r'   r;   rc   ZPT_TOKEN_CLASSIFICATION_SAMPLEZPT_QUESTION_ANSWERING_SAMPLEZ!PT_SEQUENCE_CLASSIFICATION_SAMPLEZPT_MASKED_LM_SAMPLEZPT_BASE_MODEL_SAMPLEZPT_MULTIPLE_CHOICE_SAMPLEZPT_CAUSAL_LM_SAMPLEZPT_SPEECH_BASE_MODEL_SAMPLEZPT_SPEECH_CTC_SAMPLEZPT_SPEECH_SEQ_CLASS_SAMPLEZPT_SPEECH_FRAME_CLASS_SAMPLEZPT_SPEECH_XVECTOR_SAMPLEZPT_VISION_BASE_MODEL_SAMPLEZPT_VISION_SEQ_CLASS_SAMPLErb   ZTF_TOKEN_CLASSIFICATION_SAMPLEZTF_QUESTION_ANSWERING_SAMPLEZ!TF_SEQUENCE_CLASSIFICATION_SAMPLEZTF_MASKED_LM_SAMPLEZTF_BASE_MODEL_SAMPLEZTF_MULTIPLE_CHOICE_SAMPLEZTF_CAUSAL_LM_SAMPLEZTF_SPEECH_BASE_MODEL_SAMPLEZTF_SPEECH_CTC_SAMPLEZTF_VISION_BASE_MODEL_SAMPLEZTF_VISION_SEQ_CLASS_SAMPLEr`   Z FLAX_TOKEN_CLASSIFICATION_SAMPLEZFLAX_QUESTION_ANSWERING_SAMPLEZ#FLAX_SEQUENCE_CLASSIFICATION_SAMPLEZFLAX_MASKED_LM_SAMPLEZFLAX_BASE_MODEL_SAMPLEZFLAX_MULTIPLE_CHOICE_SAMPLEZFLAX_CAUSAL_LM_SAMPLEra   rP   rf   rh   rv   r
   r
   r
   r   <module>   s   		
+!": #$#!#!$X
