# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends


class PyTorchBenchmark(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PyTorchBenchmarkArguments(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GlueDataset(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GlueDataTrainingArguments(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LineByLineTextDataset(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LineByLineWithRefDataset(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LineByLineWithSOPTextDataset(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SquadDataset(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SquadDataTrainingArguments(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TextDataset(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TextDatasetForNextSentencePrediction(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AlternatingCodebooksLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BeamScorer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BeamSearchScorer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ClassifierFreeGuidanceLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ConstrainedBeamSearchScorer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Constraint(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ConstraintListState(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DisjunctiveConstraint(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class EncoderNoRepeatNGramLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class EncoderRepetitionPenaltyLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class EpsilonLogitsWarper(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class EtaLogitsWarper(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ExponentialDecayLengthPenalty(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ForcedBOSTokenLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ForcedEOSTokenLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ForceTokensLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GenerationMixin(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class HammingDiversityLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class InfNanRemoveLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LogitNormalization(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LogitsProcessorList(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LogitsWarper(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MaxLengthCriteria(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MaxTimeCriteria(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MinLengthLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MinNewTokensLengthLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NoBadWordsLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NoRepeatNGramLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PhrasalConstraint(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PrefixConstrainedLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RepetitionPenaltyLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SequenceBiasLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class StoppingCriteria(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class StoppingCriteriaList(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SuppressTokensAtBeginLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SuppressTokensLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TemperatureLogitsWarper(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TopKLogitsWarper(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TopPLogitsWarper(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TypicalLogitsWarper(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UnbatchedClassifierFreeGuidanceLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class WhisperTimeStampLogitsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def top_k_top_p_filtering(*args, **kwargs):
    requires_backends(top_k_top_p_filtering, ["torch"])


class PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class AlbertForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AlbertForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AlbertForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AlbertForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AlbertForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AlbertForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AlbertModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AlbertPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_albert(*args, **kwargs):
    requires_backends(load_tf_weights_in_albert, ["torch"])


ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST = None


class AlignModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AlignPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AlignTextModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AlignVisionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None


class AltCLIPModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AltCLIPPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AltCLIPTextModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AltCLIPVisionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ASTForAudioClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ASTModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ASTPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = None


MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING = None


MODEL_FOR_AUDIO_XVECTOR_MAPPING = None


MODEL_FOR_BACKBONE_MAPPING = None


MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING = None


MODEL_FOR_CAUSAL_LM_MAPPING = None


MODEL_FOR_CTC_MAPPING = None


MODEL_FOR_DEPTH_ESTIMATION_MAPPING = None


MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING = None


MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = None


MODEL_FOR_IMAGE_SEGMENTATION_MAPPING = None


MODEL_FOR_IMAGE_TO_IMAGE_MAPPING = None


MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING = None


MODEL_FOR_MASK_GENERATION_MAPPING = None


MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING = None


MODEL_FOR_MASKED_LM_MAPPING = None


MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None


MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None


MODEL_FOR_OBJECT_DETECTION_MAPPING = None


MODEL_FOR_PRETRAINING_MAPPING = None


MODEL_FOR_QUESTION_ANSWERING_MAPPING = None


MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING = None


MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None


MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None


MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING = None


MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = None


MODEL_FOR_TEXT_ENCODING_MAPPING = None


MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING = None


MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING = None


MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None


MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING = None


MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING = None


MODEL_FOR_VISION_2_SEQ_MAPPING = None


MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING = None


MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING = None


MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING = None


MODEL_MAPPING = None


MODEL_WITH_LM_HEAD_MAPPING = None


class AutoBackbone(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForAudioClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForAudioFrameClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForAudioXVector(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForCTC(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForDepthEstimation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForDocumentQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForImageSegmentation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForImageToImage(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForInstanceSegmentation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForMaskedImageModeling(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForMaskGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForNextSentencePrediction(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForObjectDetection(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForSemanticSegmentation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForSeq2SeqLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForSpeechSeq2Seq(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForTableQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForTextEncoding(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForTextToSpectrogram(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForTextToWaveform(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForUniversalSegmentation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForVideoClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForVision2Seq(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForVisualQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForZeroShotImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelForZeroShotObjectDetection(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoModelWithLMHead(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class AutoformerForPrediction(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoformerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AutoformerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


BARK_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BarkCausalModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BarkCoarseModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BarkFineModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BarkModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BarkPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BarkSemanticModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


BART_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BartForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BartForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BartForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BartForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BartModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BartPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BartPretrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PretrainedBartModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BeitForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BeitForMaskedImageModeling(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BeitForSemanticSegmentation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BeitModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BeitPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BertForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BertForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BertForNextSentencePrediction(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BertForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BertForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BertForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BertForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BertLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BertLMHeadModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BertModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BertPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_bert(*args, **kwargs):
    requires_backends(load_tf_weights_in_bert, ["torch"])


class BertGenerationDecoder(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BertGenerationEncoder(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BertGenerationPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_bert_generation(*args, **kwargs):
    requires_backends(load_tf_weights_in_bert_generation, ["torch"])


BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BigBirdForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_big_bird(*args, **kwargs):
    requires_backends(load_tf_weights_in_big_bird, ["torch"])


BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BigBirdPegasusForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdPegasusForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdPegasusForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdPegasusForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdPegasusModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdPegasusPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BioGptForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BioGptForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BioGptForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BioGptModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BioGptPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


BIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BitBackbone(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BitForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BitModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BitPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BlenderbotForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BlenderbotForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BlenderbotModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BlenderbotPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BlenderbotSmallForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BlenderbotSmallForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BlenderbotSmallModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BlenderbotSmallPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


BLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BlipForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BlipForImageTextRetrieval(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BlipForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BlipModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BlipPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BlipTextModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BlipVisionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class Blip2ForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Blip2Model(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Blip2PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Blip2QFormerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Blip2VisionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BloomForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BloomForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BloomForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BloomForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BloomModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BloomPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BridgeTowerForContrastiveLearning(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BridgeTowerForImageAndTextRetrieval(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BridgeTowerForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BridgeTowerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BridgeTowerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


BROS_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BrosForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BrosModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BrosPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BrosProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BrosSpadeEEForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BrosSpadeELForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CamembertForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CamembertForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CamembertForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CamembertForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CamembertForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CamembertForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CamembertModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CamembertPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


CANINE_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CanineForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CanineForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CanineForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CanineForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CanineLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CanineModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CaninePreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_canine(*args, **kwargs):
    requires_backends(load_tf_weights_in_canine, ["torch"])


CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ChineseCLIPModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ChineseCLIPPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ChineseCLIPTextModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ChineseCLIPVisionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


CLAP_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ClapAudioModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ClapAudioModelWithProjection(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ClapFeatureExtractor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ClapModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ClapPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ClapTextModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ClapTextModelWithProjection(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CLIPModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CLIPPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CLIPTextModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CLIPTextModelWithProjection(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CLIPVisionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CLIPVisionModelWithProjection(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CLIPSegForImageSegmentation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CLIPSegModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CLIPSegPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CLIPSegTextModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CLIPSegVisionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CodeGenForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CodeGenModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CodeGenPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ConditionalDetrForObjectDetection(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ConditionalDetrForSegmentation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ConditionalDetrModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ConditionalDetrPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ConvBertForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ConvBertForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ConvBertForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ConvBertForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ConvBertForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ConvBertLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ConvBertModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ConvBertPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_convbert(*args, **kwargs):
    requires_backends(load_tf_weights_in_convbert, ["torch"])


CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ConvNextBackbone(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ConvNextForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ConvNextModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ConvNextPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ConvNextV2Backbone(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ConvNextV2ForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ConvNextV2Model(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ConvNextV2PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CpmAntForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CpmAntModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CpmAntPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CTRLForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CTRLLMHeadModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CTRLModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CTRLPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


CVT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CvtForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CvtModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CvtPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST = None


DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None


DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST = None


class Data2VecAudioForAudioFrameClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Data2VecAudioForCTC(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Data2VecAudioForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Data2VecAudioForXVector(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Data2VecAudioModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Data2VecAudioPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Data2VecTextForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Data2VecTextForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Data2VecTextForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Data2VecTextForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Data2VecTextForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Data2VecTextForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Data2VecTextModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Data2VecTextPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Data2VecVisionForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Data2VecVisionForSemanticSegmentation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Data2VecVisionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Data2VecVisionPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DebertaForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DebertaForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DebertaForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DebertaForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DebertaModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DebertaPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DebertaV2ForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DebertaV2ForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DebertaV2ForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DebertaV2ForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DebertaV2ForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DebertaV2Model(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DebertaV2PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DecisionTransformerGPT2Model(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DecisionTransformerGPT2PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DecisionTransformerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DecisionTransformerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DeformableDetrForObjectDetection(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DeformableDetrModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DeformableDetrPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DeiTForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DeiTForImageClassificationWithTeacher(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DeiTForMaskedImageModeling(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DeiTModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DeiTPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MCTCTForCTC(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MCTCTModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MCTCTPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MMBTForClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MMBTModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ModalEmbeddings(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class OpenLlamaForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class OpenLlamaForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class OpenLlamaModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class OpenLlamaPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RetriBertModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RetriBertPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class TrajectoryTransformerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TrajectoryTransformerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


VAN_PRETRAINED_MODEL_ARCHIVE_LIST = None


class VanForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VanModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VanPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


DETA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DetaForObjectDetection(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DetaModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DetaPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


DETR_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DetrForObjectDetection(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DetrForSegmentation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DetrModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DetrPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


DINAT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DinatBackbone(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DinatForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DinatModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DinatPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class Dinov2Backbone(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Dinov2ForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Dinov2Model(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Dinov2PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DistilBertForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DistilBertForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DistilBertForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DistilBertForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DistilBertForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DistilBertModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DistilBertPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DonutSwinModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DonutSwinPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None


DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None


DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DPRContextEncoder(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DPRPretrainedContextEncoder(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DPRPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DPRPretrainedQuestionEncoder(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DPRPretrainedReader(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DPRQuestionEncoder(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DPRReader(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


DPT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DPTForDepthEstimation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DPTForSemanticSegmentation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DPTModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DPTPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class EfficientFormerForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class EfficientFormerForImageClassificationWithTeacher(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class EfficientFormerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class EfficientFormerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class EfficientNetForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class EfficientNetModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class EfficientNetPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ElectraForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ElectraForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ElectraForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ElectraForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ElectraForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ElectraForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ElectraForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ElectraModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ElectraPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_electra(*args, **kwargs):
    requires_backends(load_tf_weights_in_electra, ["torch"])


ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST = None


class EncodecModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class EncodecPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class EncoderDecoderModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ErnieForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ErnieForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ErnieForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ErnieForNextSentencePrediction(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ErnieForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ErnieForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ErnieForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ErnieForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ErnieModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ErniePreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ErnieMForInformationExtraction(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ErnieMForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ErnieMForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ErnieMForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ErnieMForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ErnieMModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ErnieMPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


ESM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class EsmFoldPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class EsmForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class EsmForProteinFolding(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class EsmForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class EsmForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class EsmModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class EsmPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


FALCON_PRETRAINED_MODEL_ARCHIVE_LIST = None


class FalconForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FalconForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FalconForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FalconForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FalconModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FalconPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class FlaubertForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FlaubertForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FlaubertForQuestionAnsweringSimple(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FlaubertForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FlaubertForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FlaubertModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FlaubertPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FlaubertWithLMHeadModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class FlavaForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FlavaImageCodebook(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FlavaImageModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FlavaModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FlavaMultimodalModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FlavaPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FlavaTextModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


FNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class FNetForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FNetForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FNetForNextSentencePrediction(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FNetForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FNetForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FNetForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FNetForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FNetLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FNetModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FNetPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class FocalNetBackbone(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FocalNetForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FocalNetForMaskedImageModeling(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FocalNetModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FocalNetPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FSMTForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FSMTModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PretrainedFSMTModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None


class FunnelBaseModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FunnelForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FunnelForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FunnelForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FunnelForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FunnelForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FunnelForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FunnelModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FunnelPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_funnel(*args, **kwargs):
    requires_backends(load_tf_weights_in_funnel, ["torch"])


GIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GitForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GitModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GitPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GitVisionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


GLPN_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GLPNForDepthEstimation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GLPNModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GLPNPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GPT2DoubleHeadsModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPT2ForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPT2ForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPT2ForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPT2LMHeadModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPT2Model(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPT2PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_gpt2(*args, **kwargs):
    requires_backends(load_tf_weights_in_gpt2, ["torch"])


GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GPTBigCodeForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTBigCodeForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTBigCodeForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTBigCodeModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTBigCodePreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GPTNeoForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTNeoForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTNeoForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTNeoForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTNeoModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTNeoPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_gpt_neo(*args, **kwargs):
    requires_backends(load_tf_weights_in_gpt_neo, ["torch"])


GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GPTNeoXForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTNeoXForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTNeoXForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTNeoXForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTNeoXLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTNeoXModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTNeoXPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GPTNeoXJapaneseForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTNeoXJapaneseLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTNeoXJapaneseModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTNeoXJapanesePreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GPTJForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTJForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTJForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTJModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTJPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


GPTSAN_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GPTSanJapaneseForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTSanJapaneseModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GPTSanJapanesePreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GraphormerForGraphClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GraphormerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GraphormerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GroupViTModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GroupViTPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GroupViTTextModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class GroupViTVisionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class HubertForCTC(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class HubertForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class HubertModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class HubertPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


IBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class IBertForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class IBertForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class IBertForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class IBertForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class IBertForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class IBertModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class IBertPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST = None


class IdeficsForVisionText2Text(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class IdeficsModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class IdeficsPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class IdeficsProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ImageGPTForCausalImageModeling(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ImageGPTForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ImageGPTModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ImageGPTPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_imagegpt(*args, **kwargs):
    requires_backends(load_tf_weights_in_imagegpt, ["torch"])


INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class InformerForPrediction(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class InformerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class InformerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None


class InstructBlipForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class InstructBlipPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class InstructBlipQFormerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class InstructBlipVisionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST = None


class JukeboxModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class JukeboxPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class JukeboxPrior(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class JukeboxVQVAE(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LayoutLMForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LayoutLMForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LayoutLMForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LayoutLMForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LayoutLMModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LayoutLMPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LayoutLMv2ForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LayoutLMv2ForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LayoutLMv2ForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LayoutLMv2Model(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LayoutLMv2PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LayoutLMv3ForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LayoutLMv3ForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LayoutLMv3ForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LayoutLMv3Model(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LayoutLMv3PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


LED_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LEDForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LEDForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LEDForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LEDModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LEDPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LevitForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LevitForImageClassificationWithTeacher(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LevitModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LevitPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


LILT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LiltForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LiltForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LiltForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LiltModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LiltPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LlamaForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LlamaForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LlamaModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LlamaPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LongformerForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LongformerForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LongformerForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LongformerForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LongformerForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LongformerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LongformerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LongformerSelfAttention(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LongT5EncoderModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LongT5ForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LongT5Model(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LongT5PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


LUKE_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LukeForEntityClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeForEntityPairClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeForEntitySpanClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukePreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LxmertEncoder(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LxmertForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LxmertForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LxmertModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LxmertPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LxmertVisualFeatureEncoder(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LxmertXLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST = None


class M2M100ForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class M2M100Model(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class M2M100PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MarianForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MarianModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MarianMTModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MarkupLMForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MarkupLMForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MarkupLMForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MarkupLMModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MarkupLMPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class Mask2FormerForUniversalSegmentation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Mask2FormerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Mask2FormerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MaskFormerForInstanceSegmentation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MaskFormerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MaskFormerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MaskFormerSwinBackbone(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MBartForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MBartForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MBartForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MBartForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MBartModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MBartPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


MEGA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MegaForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegaForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegaForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegaForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegaForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegaForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegaModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegaPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MegatronBertForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForNextSentencePrediction(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MgpstrForSceneTextRecognition(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MgpstrModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MgpstrPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MistralForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MistralForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MistralModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MistralPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MobileBertForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileBertForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileBertForNextSentencePrediction(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileBertForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileBertForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileBertForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileBertForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileBertLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileBertModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileBertPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_mobilebert(*args, **kwargs):
    requires_backends(load_tf_weights_in_mobilebert, ["torch"])


MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MobileNetV1ForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileNetV1Model(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileNetV1PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_mobilenet_v1(*args, **kwargs):
    requires_backends(load_tf_weights_in_mobilenet_v1, ["torch"])


MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MobileNetV2ForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileNetV2ForSemanticSegmentation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileNetV2Model(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileNetV2PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_mobilenet_v2(*args, **kwargs):
    requires_backends(load_tf_weights_in_mobilenet_v2, ["torch"])


MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MobileViTForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileViTForSemanticSegmentation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileViTModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileViTPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MobileViTV2ForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileViTV2ForSemanticSegmentation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileViTV2Model(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MobileViTV2PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MPNetForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MPNetForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MPNetForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MPNetForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MPNetForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MPNetLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MPNetModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MPNetPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


MPT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MptForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MptForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MptForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MptForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MptModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MptPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


MRA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MraForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MraForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MraForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MraForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MraForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MraModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MraPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MT5EncoderModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MT5ForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MT5ForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MT5ForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MT5Model(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MT5PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MusicgenForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MusicgenForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MusicgenModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MusicgenPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MusicgenProcessor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


MVP_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MvpForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MvpForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MvpForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MvpForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MvpModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MvpPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


NAT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class NatBackbone(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NatForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NatModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NatPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class NezhaForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NezhaForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NezhaForNextSentencePrediction(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NezhaForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NezhaForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NezhaForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NezhaForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NezhaModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NezhaPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST = None


class NllbMoeForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NllbMoeModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NllbMoePreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NllbMoeSparseMLP(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NllbMoeTop2Router(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class NystromformerForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NystromformerForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NystromformerForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NystromformerForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NystromformerForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NystromformerLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NystromformerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class NystromformerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class OneFormerForUniversalSegmentation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class OneFormerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class OneFormerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class OpenAIGPTDoubleHeadsModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class OpenAIGPTForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class OpenAIGPTLMHeadModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class OpenAIGPTModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class OpenAIGPTPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_openai_gpt(*args, **kwargs):
    requires_backends(load_tf_weights_in_openai_gpt, ["torch"])


OPT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class OPTForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class OPTForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class OPTForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class OPTModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class OPTPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class OwlViTForObjectDetection(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class OwlViTModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class OwlViTPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class OwlViTTextModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class OwlViTVisionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PegasusForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PegasusForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PegasusModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PegasusPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST = None


class PegasusXForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PegasusXModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PegasusXPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class PerceiverForImageClassificationConvProcessing(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PerceiverForImageClassificationFourier(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PerceiverForImageClassificationLearned(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PerceiverForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PerceiverForMultimodalAutoencoding(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PerceiverForOpticalFlow(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PerceiverForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PerceiverLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PerceiverModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PerceiverPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PersimmonForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PersimmonForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PersimmonModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PersimmonPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class Pix2StructForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Pix2StructPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Pix2StructTextModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Pix2StructVisionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


PLBART_PRETRAINED_MODEL_ARCHIVE_LIST = None


class PLBartForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PLBartForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PLBartForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PLBartModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PLBartPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class PoolFormerForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PoolFormerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PoolFormerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


POP2PIANO_PRETRAINED_MODEL_ARCHIVE_LIST = None


class Pop2PianoForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Pop2PianoPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ProphetNetDecoder(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ProphetNetEncoder(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ProphetNetForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ProphetNetForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ProphetNetModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ProphetNetPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


PVT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class PvtForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PvtModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class PvtPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class QDQBertForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class QDQBertForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class QDQBertForNextSentencePrediction(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class QDQBertForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class QDQBertForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class QDQBertForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class QDQBertLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class QDQBertLMHeadModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class QDQBertModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class QDQBertPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_qdqbert(*args, **kwargs):
    requires_backends(load_tf_weights_in_qdqbert, ["torch"])


class RagModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RagPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RagSequenceForGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RagTokenForGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


REALM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RealmEmbedder(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RealmForOpenQA(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RealmKnowledgeAugEncoder(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RealmPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RealmReader(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RealmRetriever(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RealmScorer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_realm(*args, **kwargs):
    requires_backends(load_tf_weights_in_realm, ["torch"])


REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ReformerAttention(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ReformerForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ReformerForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ReformerForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ReformerLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ReformerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ReformerModelWithLMHead(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ReformerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


REGNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RegNetForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RegNetModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RegNetPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RemBertForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RemBertForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RemBertForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RemBertForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RemBertForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RemBertForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RemBertLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RemBertModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RemBertPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_rembert(*args, **kwargs):
    requires_backends(load_tf_weights_in_rembert, ["torch"])


RESNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ResNetBackbone(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ResNetForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ResNetModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ResNetPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RobertaForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RobertaForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RobertaForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RobertaForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RobertaForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RobertaForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RobertaModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RobertaPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RobertaPreLayerNormForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RobertaPreLayerNormForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RobertaPreLayerNormForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RobertaPreLayerNormForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RobertaPreLayerNormForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RobertaPreLayerNormForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RobertaPreLayerNormModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RobertaPreLayerNormPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RoCBertForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoCBertForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoCBertForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoCBertForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoCBertForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoCBertForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoCBertForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoCBertLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoCBertModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoCBertPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_roc_bert(*args, **kwargs):
    requires_backends(load_tf_weights_in_roc_bert, ["torch"])


ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RoFormerForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_roformer(*args, **kwargs):
    requires_backends(load_tf_weights_in_roformer, ["torch"])


RWKV_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RwkvForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RwkvModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RwkvPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


SAM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SamModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SamPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SegformerDecodeHead(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SegformerForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SegformerForSemanticSegmentation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SegformerLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SegformerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SegformerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


SEW_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SEWForCTC(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SEWForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SEWModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SEWPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SEWDForCTC(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SEWDForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SEWDModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SEWDPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SpeechEncoderDecoderModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class Speech2TextForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Speech2TextModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Speech2TextPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Speech2Text2ForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Speech2Text2PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SpeechT5ForSpeechToSpeech(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SpeechT5ForSpeechToText(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SpeechT5ForTextToSpeech(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SpeechT5HifiGan(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SpeechT5Model(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SpeechT5PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SplinterForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SplinterForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SplinterLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SplinterModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SplinterPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SqueezeBertForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SqueezeBertForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SqueezeBertForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SqueezeBertForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SqueezeBertForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SqueezeBertModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SqueezeBertModule(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SqueezeBertPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SwiftFormerForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SwiftFormerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SwiftFormerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


SWIN_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SwinBackbone(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SwinForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SwinForMaskedImageModeling(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SwinModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SwinPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LIST = None


class Swin2SRForImageSuperResolution(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Swin2SRModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Swin2SRPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class Swinv2ForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Swinv2ForMaskedImageModeling(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Swinv2Model(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Swinv2PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


SWITCH_TRANSFORMERS_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SwitchTransformersEncoderModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SwitchTransformersForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SwitchTransformersModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SwitchTransformersPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SwitchTransformersSparseMLP(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SwitchTransformersTop1Router(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


T5_PRETRAINED_MODEL_ARCHIVE_LIST = None


class T5EncoderModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class T5ForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class T5ForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class T5ForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class T5Model(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class T5PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_t5(*args, **kwargs):
    requires_backends(load_tf_weights_in_t5, ["torch"])


TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class TableTransformerForObjectDetection(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TableTransformerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TableTransformerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST = None


class TapasForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TapasForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TapasForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TapasModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TapasPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_tapas(*args, **kwargs):
    requires_backends(load_tf_weights_in_tapas, ["torch"])


TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class TimeSeriesTransformerForPrediction(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TimeSeriesTransformerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TimeSeriesTransformerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class TimesformerForVideoClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TimesformerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TimesformerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TimmBackbone(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None


class AdaptiveEmbedding(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TransfoXLForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TransfoXLLMHeadModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TransfoXLModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TransfoXLPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_transfo_xl(*args, **kwargs):
    requires_backends(load_tf_weights_in_transfo_xl, ["torch"])


TROCR_PRETRAINED_MODEL_ARCHIVE_LIST = None


class TrOCRForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TrOCRPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


TVLT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class TvltForAudioVisualClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TvltForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TvltModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class TvltPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UMT5EncoderModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UMT5ForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UMT5ForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UMT5ForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UMT5Model(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UMT5PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST = None


class UniSpeechForCTC(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UniSpeechForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UniSpeechForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UniSpeechModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UniSpeechPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class UniSpeechSatForAudioFrameClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UniSpeechSatForCTC(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UniSpeechSatForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UniSpeechSatForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UniSpeechSatForXVector(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UniSpeechSatModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UniSpeechSatPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UperNetForSemanticSegmentation(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UperNetPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST = None


class VideoMAEForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VideoMAEForVideoClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VideoMAEModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VideoMAEPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


VILT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ViltForImageAndTextRetrieval(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ViltForImagesAndTextClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ViltForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ViltForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ViltForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ViltLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ViltModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ViltPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisionEncoderDecoderModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisionTextDualEncoderModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class VisualBertForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertForRegionToPhraseAlignment(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertForVisualReasoning(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


VIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ViTForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ViTForMaskedImageModeling(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ViTModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ViTPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ViTHybridForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ViTHybridModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ViTHybridPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ViTMAEForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ViTMAELayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ViTMAEModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ViTMAEPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ViTMSNForImageClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ViTMSNModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class ViTMSNPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


VITDET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class VitDetBackbone(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VitDetModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VitDetPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


VITMATTE_PRETRAINED_MODEL_ARCHIVE_LIST = None


class VitMatteForImageMatting(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VitMattePreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


VITS_PRETRAINED_MODEL_ARCHIVE_LIST = None


class VitsModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VitsPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class VivitForVideoClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VivitModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VivitPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class Wav2Vec2ForAudioFrameClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Wav2Vec2ForCTC(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Wav2Vec2ForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Wav2Vec2ForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Wav2Vec2ForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Wav2Vec2ForXVector(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Wav2Vec2Model(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Wav2Vec2PreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class Wav2Vec2ConformerForAudioFrameClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Wav2Vec2ConformerForCTC(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Wav2Vec2ConformerForPreTraining(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Wav2Vec2ConformerForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Wav2Vec2ConformerForXVector(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Wav2Vec2ConformerModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Wav2Vec2ConformerPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class WavLMForAudioFrameClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class WavLMForCTC(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class WavLMForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class WavLMForXVector(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class WavLMModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class WavLMPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class WhisperForAudioClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class WhisperForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class WhisperModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class WhisperPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XCLIPModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XCLIPPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XCLIPTextModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XCLIPVisionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


XGLM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XGLMForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XGLMModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XGLMPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLMForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMForQuestionAnsweringSimple(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMWithLMHeadModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLMProphetNetDecoder(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMProphetNetEncoder(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMProphetNetForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMProphetNetForConditionalGeneration(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMProphetNetModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMProphetNetPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLMRobertaForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMRobertaForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMRobertaForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMRobertaForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMRobertaForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMRobertaForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMRobertaModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMRobertaPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLMRobertaXLForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMRobertaXLForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMRobertaXLForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMRobertaXLForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMRobertaXLForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMRobertaXLForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMRobertaXLModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLMRobertaXLPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLNetForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLNetForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLNetForQuestionAnsweringSimple(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLNetForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLNetForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLNetLMHeadModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLNetModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XLNetPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_xlnet(*args, **kwargs):
    requires_backends(load_tf_weights_in_xlnet, ["torch"])


XMOD_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XmodForCausalLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XmodForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XmodForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XmodForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XmodForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XmodForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XmodModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class XmodPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST = None


class YolosForObjectDetection(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class YolosModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class YolosPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


YOSO_PRETRAINED_MODEL_ARCHIVE_LIST = None


class YosoForMaskedLM(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class YosoForMultipleChoice(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class YosoForQuestionAnswering(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class YosoForSequenceClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class YosoForTokenClassification(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class YosoLayer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class YosoModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class YosoPreTrainedModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class Adafactor(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class AdamW(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def get_constant_schedule(*args, **kwargs):
    requires_backends(get_constant_schedule, ["torch"])


def get_constant_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_constant_schedule_with_warmup, ["torch"])


def get_cosine_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_cosine_schedule_with_warmup, ["torch"])


def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_cosine_with_hard_restarts_schedule_with_warmup, ["torch"])


def get_inverse_sqrt_schedule(*args, **kwargs):
    requires_backends(get_inverse_sqrt_schedule, ["torch"])


def get_linear_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_linear_schedule_with_warmup, ["torch"])


def get_polynomial_decay_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_polynomial_decay_schedule_with_warmup, ["torch"])


def get_scheduler(*args, **kwargs):
    requires_backends(get_scheduler, ["torch"])


class Conv1D(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def apply_chunking_to_forward(*args, **kwargs):
    requires_backends(apply_chunking_to_forward, ["torch"])


def prune_layer(*args, **kwargs):
    requires_backends(prune_layer, ["torch"])


class Trainer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def torch_distributed_zero_first(*args, **kwargs):
    requires_backends(torch_distributed_zero_first, ["torch"])


class Seq2SeqTrainer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])
