U
    -e                     @   s2  d Z ddlmZ ddlZddlZddlZddlZddlZddlZddl	Zddl
ZddlmZ ddlmZ ddlmZ ddlmZ dd	lmZmZmZmZmZmZ dd
lmZ ddlmZmZ ddddddddgZedddddddej ej ee! e"ed e"eeej ee"f  e#ej d	ddZ$edddddddej ej ee! e"ed e"eeej ee"f  e#ej%j&d	ddZ$edddddddddej ej ee! e"e#e"eeej ee"f  e#eej ej%j&f d	ddZ$eddddddddddd 
ej ee! e!e"e#ed e"eeej ee"f  e#e!e#ej%j&d!d"dZ'eddddddddddd 
ej ee! e!e"e#ed e"eeej ee"f  e#e!e#ej d!d#dZ'eddddddddddd$dd 
ej ee! e!e"e#e#e"eeej ee"f  e#e!e#eej ej%j&f d!d%dZ'ed&eej ej%j(f d'Z)dd$d(e)e#e!e)d)d*dZ*d$d+e)e!e)d,d-dZ+ed.edef d'Z,dAe,e#e!e,d/d0dZ-eddd1d$d2ej ej e!e!ej d3d4dZ.dd$d5ej e!eej/j0 e!ej d6d7dZ1d8d9dd:ddd;ej e!ee2ee2 e!e#e#eej d<
d=dZ3ej%j4eeej ee"f  e!ee2ej f d>d?d@Z5dS )Ba  
Temporal segmentation
=====================

Recurrence and self-similarity
------------------------------
.. autosummary::
    :toctree: generated/

    cross_similarity
    recurrence_matrix
    recurrence_to_lag
    lag_to_recurrence
    timelag_filter
    path_enhance

Temporal clustering
-------------------
.. autosummary::
    :toctree: generated/

    agglomerative
    subsegment
    	decoratorN   )cache)util)diagonal_filter)ParameterError)AnyCallableOptionalTypeVarUnionoverload)Literal)_WindowSpec_FloatLike_cocross_similarityrecurrence_matrixrecurrence_to_laglag_to_recurrencetimelag_filteragglomerative
subsegmentpath_enhance.F)kmetricsparsemode	bandwidthfull)	datadata_refr   r   r   r   r   r   returnc                C   s   d S N r    r!   r   r   r   r   r   r   r$   r$   P/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/librosa/segment.pyr   <   s    Tc                C   s   d S r#   r$   r%   r$   r$   r&   r   K   s       )levelZ	euclideanconnectivityc                C   s>  t |}t | } t |jdd | jdd sNtd|j d| j dt |dd}|jd }|j|dfdd}t | dd} | jd }	| j|	dfdd} |d	krtd
| d|dkrt|dt t 	| }t
|}|}
|r|dkr|	}ztjjt|||dd}W n. tk
rB   tjjt|||dd}Y nX || |dkr^d}n|}|j| |d }|st|	D ]H}||  d }|t |||f   d }d||||d f< q| }|  |dkr|t}n4|dkr&t|||
}t |jd|  |jdd< |j}|s:| }|S )u  Compute cross-similarity from one data sequence to a reference sequence.

    The output is a matrix ``xsim``, where ``xsim[i, j]`` is non-zero
    if ``data_ref[..., i]`` is a k-nearest neighbor of ``data[..., j]``.

    Parameters
    ----------
    data : np.ndarray [shape=(..., d, n)]
        A feature matrix for the comparison sequence.
        If the data has more than two dimensions (e.g., for multi-channel inputs),
        the leading dimensions are flattened prior to comparison.
        For example, a stereo input with shape `(2, d, n)` is
        automatically reshaped to `(2 * d, n)`.

    data_ref : np.ndarray [shape=(..., d, n_ref)]
        A feature matrix for the reference sequence
        If the data has more than two dimensions (e.g., for multi-channel inputs),
        the leading dimensions are flattened prior to comparison.
        For example, a stereo input with shape `(2, d, n_ref)` is
        automatically reshaped to `(2 * d, n_ref)`.

    k : int > 0 [scalar] or None
        the number of nearest-neighbors for each sample

        Default: ``k = 2 * ceil(sqrt(n_ref))``,
        or ``k = 2`` if ``n_ref <= 3``

    metric : str
        Distance metric to use for nearest-neighbor calculation.

        See `sklearn.neighbors.NearestNeighbors` for details.

    sparse : bool [scalar]
        if False, returns a dense type (ndarray)
        if True, returns a sparse type (scipy.sparse.csc_matrix)

    mode : str, {'connectivity', 'distance', 'affinity'}
        If 'connectivity', a binary connectivity matrix is produced.

        If 'distance', then a non-zero entry contains the distance between
        points.

        If 'affinity', then non-zero entries are mapped to
        ``exp( - distance(i, j) / bandwidth)`` where ``bandwidth`` is
        as specified below.

    bandwidth : None, float > 0, ndarray, or str
        str options include ``{'med_k_scalar', 'mean_k', 'gmean_k', 'mean_k_avg', 'gmean_k_avg', 'mean_k_avg_and_pair'}``

        If ndarray is supplied, use ndarray as bandwidth for each i,j pair.

        If using ``mode='affinity'``, this can be used to set the
        bandwidth on the affinity kernel.

        If no value is provided or ``None``, default to ``'med_k_scalar'``.

        If ``bandwidth='med_k_scalar'``, bandwidth is set automatically to the median
        distance to the k'th nearest neighbor of each ``data[:, i]``.

        If ``bandwidth='mean_k'``, bandwidth is estimated for each sample-pair (i, j) by taking the
        arithmetic mean between distances to the k-th nearest neighbor for sample i and sample j.

        If ``bandwidth='gmean_k'``, bandwidth is estimated for each sample-pair (i, j) by taking the
        geometric mean between distances to the k-th nearest neighbor for sample i and j [#z]_.

        If ``bandwidth='mean_k_avg'``, bandwidth is estimated for each sample-pair (i, j) by taking the
        arithmetic mean between the average distances to the first k-th nearest neighbors for
        sample i and sample j.
        This is similar to the approach in Wang et al. (2014) [#w]_ but does not include the distance
        between i and j.

        If ``bandwidth='gmean_k_avg'``, bandwidth is estimated for each sample-pair (i, j) by taking the
        geometric mean between the average distances to the first k-th nearest neighbors for
        sample i and sample j.

        If ``bandwidth='mean_k_avg_and_pair'``, bandwidth is estimated for each sample-pair (i, j) by
        taking the arithmetic mean between three terms: the average distances to the first
        k-th nearest neighbors for sample i and sample j respectively, as well as
        the distance between i and j.
        This is similar to the approach in Wang et al. (2014). [#w]_

        .. [#z] Zelnik-Manor, Lihi, and Pietro Perona. (2004).
            "Self-tuning spectral clustering." Advances in neural information processing systems 17.

        .. [#w] Wang, Bo, et al. (2014).
            "Similarity network fusion for aggregating data types on a genomic scale." Nat Methods 11, 333–337.
            https://doi.org/10.1038/nmeth.2810

    full : bool
        If using ``mode ='affinity'`` or ``mode='distance'``, this option can be used to compute
        the full affinity or distance matrix as opposed a sparse matrix with only none-zero terms
        for the first k-neighbors of each sample.
        This option has no effect when using ``mode='connectivity'``.

        When using ``mode='distance'``, setting ``full=True`` will ignore ``k`` and ``width``.
        When using ``mode='affinity'``, setting ``full=True`` will use ``k`` exclusively for
        bandwidth estimation, and ignore ``width``.

    Returns
    -------
    xsim : np.ndarray or scipy.sparse.csc_matrix, [shape=(n_ref, n)]
        Cross-similarity matrix

    See Also
    --------
    recurrence_matrix
    recurrence_to_lag
    librosa.feature.stack_memory
    sklearn.neighbors.NearestNeighbors
    scipy.spatial.distance.cdist

    Notes
    -----
    This function caches at level 30.

    Examples
    --------
    Find nearest neighbors in CQT space between two sequences

    >>> hop_length = 1024
    >>> y_ref, sr = librosa.load(librosa.ex('pistachio'))
    >>> y_comp, sr = librosa.load(librosa.ex('pistachio'), offset=10)
    >>> chroma_ref = librosa.feature.chroma_cqt(y=y_ref, sr=sr, hop_length=hop_length)
    >>> chroma_comp = librosa.feature.chroma_cqt(y=y_comp, sr=sr, hop_length=hop_length)
    >>> # Use time-delay embedding to get a cleaner recurrence matrix
    >>> x_ref = librosa.feature.stack_memory(chroma_ref, n_steps=10, delay=3)
    >>> x_comp = librosa.feature.stack_memory(chroma_comp, n_steps=10, delay=3)
    >>> xsim = librosa.segment.cross_similarity(x_comp, x_ref)

    Or fix the number of nearest neighbors to 5

    >>> xsim = librosa.segment.cross_similarity(x_comp, x_ref, k=5)

    Use cosine similarity instead of Euclidean distance

    >>> xsim = librosa.segment.cross_similarity(x_comp, x_ref, metric='cosine')

    Use an affinity matrix instead of binary connectivity

    >>> xsim_aff = librosa.segment.cross_similarity(x_comp, x_ref, metric='cosine', mode='affinity')

    Plot the feature and recurrence matrices

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(ncols=2, sharex=True, sharey=True)
    >>> imgsim = librosa.display.specshow(xsim, x_axis='s', y_axis='s',
    ...                          hop_length=hop_length, ax=ax[0])
    >>> ax[0].set(title='Binary cross-similarity (symmetric)')
    >>> imgaff = librosa.display.specshow(xsim_aff, x_axis='s', y_axis='s',
    ...                          cmap='magma_r', hop_length=hop_length, ax=ax[1])
    >>> ax[1].set(title='Cross-affinity')
    >>> ax[1].label_outer()
    >>> fig.colorbar(imgsim, ax=ax[0], orientation='horizontal', ticks=[0, 1])
    >>> fig.colorbar(imgaff, ax=ax[1], orientation='horizontal')
    Nzdata_ref.shape=z and data.shape=z% do not match on leading dimension(s)r   Forderr)   distanceaffinityInvalid mode=':'. Must be one of ['connectivity', 'distance', 'affinity']   r)   autoZn_neighborsr   	algorithmbruter0   r/   )Xr   r   )np
atleast_2dZallcloseshaper   swapaxesreshapeminceilsqrtintsklearn	neighborsNearestNeighbors
ValueErrorfitkneighbors_graphtolilrangenonzeroargsorttoarraytocsreliminate_zerosastypebool__affinity_bandwidthexpr    T)r    r!   r   r   r   r   r   r   Zn_refnbandwidth_kknnkng_modeZxsimilinksidxaff_bandwidthr$   r$   r&   r   Z   sp     (

 


  
  



)
r   widthr   symr   r   r   selfaxisr   )r    r   r\   r   r]   r   r   r   r^   r_   r   r"   c       
         C   s   d S r#   r$   r    r   r\   r   r]   r   r   r   r^   r_   r   r$   r$   r&   r   [  s    c       
         C   s   d S r#   r$   r`   r$   r$   r&   r   m  s    r*   c       
      	   C   s  t | } t | |	d} | jd }| j|dfdd} |dk sL||d d krftd||	|d d |dkr~td	| d
|dkrdt t |d|  d  }t	|}|}|
r|dkr|}z(t
jjt|d |d|  |dd}W n: tk
r$   t
jjt|d |d|  |dd}Y nX ||  |dkr@d}n|}|j|d }|
st| d |D ]}|d| qjt|D ]H}||  d }|t |||f   d }d||||d f< q|r|dkr|d n|dkr|d n
|d |r||j}| }|  |dkrD|t}nD|dkrd|j|jdk < t|||}t |jd|  |jdd< |j}|s| }|S )u  Compute a recurrence matrix from a data matrix.

    ``rec[i, j]`` is non-zero if ``data[..., i]`` is a k-nearest neighbor
    of ``data[..., j]`` and ``|i - j| >= width``

    The specific value of ``rec[i, j]`` can have several forms, governed
    by the ``mode`` parameter below:

        - Connectivity: ``rec[i, j] = 1 or 0`` indicates that frames ``i`` and ``j`` are repetitions

        - Affinity: ``rec[i, j] > 0`` measures how similar frames ``i`` and ``j`` are.  This is also
          known as a (sparse) self-similarity matrix.

        - Distance: ``rec[i, j] > 0`` measures how distant frames ``i`` and ``j`` are.  This is also
          known as a (sparse) self-distance matrix.

    The general term *recurrence matrix* can refer to any of the three forms above.

    Parameters
    ----------
    data : np.ndarray [shape=(..., d, n)]
        A feature matrix.
        If the data has more than two dimensions (e.g., for multi-channel inputs),
        the leading dimensions are flattened prior to comparison.
        For example, a stereo input with shape `(2, d, n)` is
        automatically reshaped to `(2 * d, n)`.

    k : int > 0 [scalar] or None
        the number of nearest-neighbors for each sample

        Default: ``k = 2 * ceil(sqrt(t - 2 * width + 1))``,
        or ``k = 2`` if ``t <= 2 * width + 1``

    width : int >= 1 [scalar]
        only link neighbors ``(data[..., i], data[..., j])``
        if ``|i - j| >= width``

        ``width`` cannot exceed the length of the data.

    metric : str
        Distance metric to use for nearest-neighbor calculation.

        See `sklearn.neighbors.NearestNeighbors` for details.

    sym : bool [scalar]
        set ``sym=True`` to only link mutual nearest-neighbors

    sparse : bool [scalar]
        if False, returns a dense type (ndarray)
        if True, returns a sparse type (scipy.sparse.csc_matrix)

    mode : str, {'connectivity', 'distance', 'affinity'}
        If 'connectivity', a binary connectivity matrix is produced.

        If 'distance', then a non-zero entry contains the distance between
        points.

        If 'affinity', then non-zero entries are mapped to
        ``exp( - distance(i, j) / bandwidth)`` where ``bandwidth`` is
        as specified below.

    bandwidth : None, float > 0, ndarray, or str
        str options include ``{'med_k_scalar', 'mean_k', 'gmean_k', 'mean_k_avg', 'gmean_k_avg', 'mean_k_avg_and_pair'}``

        If ndarray is supplied, use ndarray as bandwidth for each i,j pair.

        If using ``mode='affinity'``, the ``bandwidth`` option can be used to set the
        bandwidth on the affinity kernel.

        If no value is provided or ``None``, default to ``'med_k_scalar'``.

        If ``bandwidth='med_k_scalar'``, a scalar bandwidth is set to the median distance
        of the k-th nearest neighbor for all samples.

        If ``bandwidth='mean_k'``, bandwidth is estimated for each sample-pair (i, j) by taking the
        arithmetic mean between distances to the k-th nearest neighbor for sample i and sample j.

        If ``bandwidth='gmean_k'``, bandwidth is estimated for each sample-pair (i, j) by taking the
        geometric mean between distances to the k-th nearest neighbor for sample i and j [#z]_.

        If ``bandwidth='mean_k_avg'``, bandwidth is estimated for each sample-pair (i, j) by taking the
        arithmetic mean between the average distances to the first k-th nearest neighbors for
        sample i and sample j.
        This is similar to the approach in Wang et al. (2014) [#w]_ but does not include the distance
        between i and j.

        If ``bandwidth='gmean_k_avg'``, bandwidth is estimated for each sample-pair (i, j) by taking the
        geometric mean between the average distances to the first k-th nearest neighbors for
        sample i and sample j.

        If ``bandwidth='mean_k_avg_and_pair'``, bandwidth is estimated for each sample-pair (i, j) by
        taking the arithmetic mean between three terms: the average distances to the first
        k-th nearest neighbors for sample i and sample j respectively, as well as
        the distance between i and j.
        This is similar to the approach in Wang et al. (2014). [#w]_

        .. [#z] Zelnik-Manor, Lihi, and Pietro Perona. (2004).
            "Self-tuning spectral clustering." Advances in neural information processing systems 17.

        .. [#w] Wang, Bo, et al. (2014).
            "Similarity network fusion for aggregating data types on a genomic scale." Nat Methods 11, 333–337.
            https://doi.org/10.1038/nmeth.2810

    self : bool
        If ``True``, then the main diagonal is populated with self-links:
        0 if ``mode='distance'``, and 1 otherwise.

        If ``False``, the main diagonal is left empty.

    axis : int
        The axis along which to compute recurrence.
        By default, the last index (-1) is taken.

    full : bool
        If using ``mode ='affinity'`` or ``mode='distance'``, this option can be used to compute
        the full affinity or distance matrix as opposed a sparse matrix with only none-zero terms
        for the first k-neighbors of each sample.
        This option has no effect when using ``mode='connectivity'``.

        When using ``mode='distance'``, setting ``full=True`` will ignore ``k`` and ``width``.
        When using ``mode='affinity'``, setting ``full=True`` will use ``k`` exclusively for
        bandwidth estimation, and ignore ``width``.

    Returns
    -------
    rec : np.ndarray or scipy.sparse.csc_matrix, [shape=(t, t)]
        Recurrence matrix

    See Also
    --------
    sklearn.neighbors.NearestNeighbors
    scipy.spatial.distance.cdist
    librosa.feature.stack_memory
    recurrence_to_lag

    Notes
    -----
    This function caches at level 30.

    Examples
    --------
    Find nearest neighbors in CQT space

    >>> y, sr = librosa.load(librosa.ex('nutcracker'))
    >>> hop_length = 1024
    >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length)
    >>> # Use time-delay embedding to get a cleaner recurrence matrix
    >>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=10, delay=3)
    >>> R = librosa.segment.recurrence_matrix(chroma_stack)

    Or fix the number of nearest neighbors to 5

    >>> R = librosa.segment.recurrence_matrix(chroma_stack, k=5)

    Suppress neighbors within +- 7 frames

    >>> R = librosa.segment.recurrence_matrix(chroma_stack, width=7)

    Use cosine similarity instead of Euclidean distance

    >>> R = librosa.segment.recurrence_matrix(chroma_stack, metric='cosine')

    Require mutual nearest neighbors

    >>> R = librosa.segment.recurrence_matrix(chroma_stack, sym=True)

    Use an affinity matrix instead of binary connectivity

    >>> R_aff = librosa.segment.recurrence_matrix(chroma_stack, metric='cosine',
    ...                                           mode='affinity')

    Plot the feature and recurrence matrices

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(ncols=2, sharex=True, sharey=True)
    >>> imgsim = librosa.display.specshow(R, x_axis='s', y_axis='s',
    ...                          hop_length=hop_length, ax=ax[0])
    >>> ax[0].set(title='Binary recurrence (symmetric)')
    >>> imgaff = librosa.display.specshow(R_aff, x_axis='s', y_axis='s',
    ...                          hop_length=hop_length, cmap='magma_r', ax=ax[1])
    >>> ax[1].set(title='Affinity recurrence')
    >>> ax[1].label_outer()
    >>> fig.colorbar(imgsim, ax=ax[0], orientation='horizontal', ticks=[0, 1])
    >>> fig.colorbar(imgaff, ax=ax[1], orientation='horizontal')
    r   r*   r+   r,   r   r3   zDwidth={} must be at least 1 and at most (data.shape[{}] - 1) // 2={}r.   r1   r2   Nr)   r4   r5   r7   r0   r/   r   g        ) r9   r:   r<   r;   r=   r   formatr?   r@   rA   rB   rC   rD   r>   rE   rF   rG   rH   rI   ZsetdiagrJ   rK   rL   minimumrS   rM   rN   rO   rP   r    rQ   rR   )r    r   r\   r   r]   r   r   r   r^   r_   r   trU   rV   rW   recZdiagrX   rY   rZ   r[   r$   r$   r&   r     s     I

  

   
  






_ArrayOrSparseMatrix)bound)padr_   )re   rh   r_   r"   c          	      C   s   t |}| jdks(| jd | jd kr8td| j tj| }|rN| j}| j| }|r|rt j	ddgg| j
d|d}|dkrd}nd}tjj|| |d} n6t d	d	g}d|g|d| d
d
f< t j| |dd} tj| d|d}|r||}|S )u	  Convert a recurrence matrix into a lag matrix.

        ``lag[i, j] == rec[i+j, j]``

    This transformation turns diagonal structures in the recurrence matrix
    into horizontal structures in the lag matrix.
    These horizontal structures can be used to infer changes in the repetition
    structure of a piece, e.g., the beginning of a new section as done in [#]_.

    .. [#] Serra, J., Müller, M., Grosche, P., & Arcos, J. L. (2014).
           Unsupervised music structure annotation by time series structure
           features and segment similarity.
           IEEE Transactions on Multimedia, 16(5), 1229-1240.

    Parameters
    ----------
    rec : np.ndarray, or scipy.sparse.spmatrix [shape=(n, n)]
        A (binary) recurrence matrix, as returned by `recurrence_matrix`

    pad : bool
        If False, ``lag`` matrix is square, which is equivalent to
        assuming that the signal repeats itself indefinitely.

        If True, ``lag`` is padded with ``n`` zeros, which eliminates
        the assumption of repetition.

    axis : int
        The axis to keep as the ``time`` axis.
        The alternate axis will be converted to lag coordinates.

    Returns
    -------
    lag : np.ndarray
        The recurrence matrix in (lag, time) (if ``axis=1``)
        or (time, lag) (if ``axis=0``) coordinates

    Raises
    ------
    ParameterError : if ``rec`` is non-square

    See Also
    --------
    recurrence_matrix
    lag_to_recurrence
    util.shear

    Examples
    --------
    >>> y, sr = librosa.load(librosa.ex('nutcracker'))
    >>> hop_length = 1024
    >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length)
    >>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=10, delay=3)
    >>> recurrence = librosa.segment.recurrence_matrix(chroma_stack)
    >>> lag_pad = librosa.segment.recurrence_to_lag(recurrence, pad=True)
    >>> lag_nopad = librosa.segment.recurrence_to_lag(recurrence, pad=False)

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2, sharex=True)
    >>> librosa.display.specshow(lag_pad, x_axis='time', y_axis='lag',
    ...                          hop_length=hop_length, ax=ax[0])
    >>> ax[0].set(title='Lag (zero-padded)')
    >>> ax[0].label_outer()
    >>> librosa.display.specshow(lag_nopad, x_axis='time', y_axis='lag',
    ...                          hop_length=hop_length, ax=ax[1])
    >>> ax[1].set(title='Lag (no padding)')
    r3   r   r   z$non-square recurrence matrix shape: )dtypeZcsrZcsc)rb   )r   r   NZconstantra   r*   factorr_   )r9   absndimr;   r   scipyr   issparserb   asarrayri   r<   Zkronarrayrh   r   shearZasformat)	re   rh   r_   r   fmtrd   paddingZrec_fmtlagr$   r$   r&   r     s*    E


r_   )ru   r_   r"   c                C   s   |dkrt d| t|}| jdksZ| jd | jd krj| jd|  d| j|  krjt d| j | j| }tj| d|d}tdg|j }t||d| < |t| }|S )	a  Convert a lag matrix into a recurrence matrix.

    Parameters
    ----------
    lag : np.ndarray or scipy.sparse.spmatrix
        A lag matrix, as produced by ``recurrence_to_lag``
    axis : int
        The axis corresponding to the time dimension.
        The alternate axis will be interpreted in lag coordinates.

    Returns
    -------
    rec : np.ndarray or scipy.sparse.spmatrix [shape=(n, n)]
        A recurrence matrix in (time, time) coordinates
        For sparse matrices, format will match that of ``lag``.

    Raises
    ------
    ParameterError : if ``lag`` does not have the correct shape

    See Also
    --------
    recurrence_to_lag

    Examples
    --------
    >>> y, sr = librosa.load(librosa.ex('nutcracker'))
    >>> hop_length = 1024
    >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length)
    >>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=10, delay=3)
    >>> recurrence = librosa.segment.recurrence_matrix(chroma_stack)
    >>> lag_pad = librosa.segment.recurrence_to_lag(recurrence, pad=True)
    >>> lag_nopad = librosa.segment.recurrence_to_lag(recurrence, pad=False)
    >>> rec_pad = librosa.segment.lag_to_recurrence(lag_pad)
    >>> rec_nopad = librosa.segment.lag_to_recurrence(lag_nopad)

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True)
    >>> librosa.display.specshow(lag_pad, x_axis='s', y_axis='lag',
    ...                          hop_length=hop_length, ax=ax[0, 0])
    >>> ax[0, 0].set(title='Lag (zero-padded)')
    >>> ax[0, 0].label_outer()
    >>> librosa.display.specshow(lag_nopad, x_axis='s', y_axis='time',
    ...                          hop_length=hop_length, ax=ax[0, 1])
    >>> ax[0, 1].set(title='Lag (no padding)')
    >>> ax[0, 1].label_outer()
    >>> librosa.display.specshow(rec_pad, x_axis='s', y_axis='time',
    ...                          hop_length=hop_length, ax=ax[1, 0])
    >>> ax[1, 0].set(title='Recurrence (with padding)')
    >>> librosa.display.specshow(rec_nopad, x_axis='s', y_axis='time',
    ...                          hop_length=hop_length, ax=ax[1, 1])
    >>> ax[1, 1].set(title='Recurrence (without padding)')
    >>> ax[1, 1].label_outer()
    )r   r   r*   zInvalid target axis: r3   r   r   zInvalid lag matrix shape: rj   N)	r   r9   rl   rm   r;   r   rr   slicetuple)ru   r_   rd   re   Z	sub_sliceZ	rec_slicer$   r$   r&   r   #  s    9


_F)functionrh   indexr"   c                    s    fdd}t || S )a
  Apply a filter in the time-lag domain.

    This is primarily useful for adapting image filters to operate on
    `recurrence_to_lag` output.

    Using `timelag_filter` is equivalent to the following sequence of
    operations:

    >>> data_tl = librosa.segment.recurrence_to_lag(data)
    >>> data_filtered_tl = function(data_tl)
    >>> data_filtered = librosa.segment.lag_to_recurrence(data_filtered_tl)

    Parameters
    ----------
    function : callable
        The filtering function to wrap, e.g., `scipy.ndimage.median_filter`
    pad : bool
        Whether to zero-pad the structure feature matrix
    index : int >= 0
        If ``function`` accepts input data as a positional argument, it should be
        indexed by ``index``

    Returns
    -------
    wrapped_function : callable
        A new filter function which applies in time-lag space rather than
        time-time space.

    Examples
    --------
    Apply a 31-bin median filter to the diagonal of a recurrence matrix.
    With default, parameters, this corresponds to a time window of about
    0.72 seconds.

    >>> y, sr = librosa.load(librosa.ex('nutcracker'), duration=30)
    >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
    >>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=3, delay=3)
    >>> rec = librosa.segment.recurrence_matrix(chroma_stack)
    >>> from scipy.ndimage import median_filter
    >>> diagonal_median = librosa.segment.timelag_filter(median_filter)
    >>> rec_filtered = diagonal_median(rec, size=(1, 31), mode='mirror')

    Or with affinity weights

    >>> rec_aff = librosa.segment.recurrence_matrix(chroma_stack, mode='affinity')
    >>> rec_aff_fil = diagonal_median(rec_aff, size=(1, 31), mode='mirror')

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
    >>> librosa.display.specshow(rec, y_axis='s', x_axis='s', ax=ax[0, 0])
    >>> ax[0, 0].set(title='Raw recurrence matrix')
    >>> ax[0, 0].label_outer()
    >>> librosa.display.specshow(rec_filtered, y_axis='s', x_axis='s', ax=ax[0, 1])
    >>> ax[0, 1].set(title='Filtered recurrence matrix')
    >>> ax[0, 1].label_outer()
    >>> librosa.display.specshow(rec_aff, x_axis='s', y_axis='s',
    ...                          cmap='magma_r', ax=ax[1, 0])
    >>> ax[1, 0].set(title='Raw affinity matrix')
    >>> librosa.display.specshow(rec_aff_fil, x_axis='s', y_axis='s',
    ...                          cmap='magma_r', ax=ax[1, 1])
    >>> ax[1, 1].set(title='Filtered affinity matrix')
    >>> ax[1, 1].label_outer()
    c                    s.   t |}t|  d| < | ||}t|S )z$Wrap the filter with lag conversions)rh   )listr   r   )	wrapped_fargskwargsresultr{   rh   r$   r&   __my_filter  s    
z#timelag_filter.<locals>.__my_filterr   )rz   rh   r{   r   r$   r   r&   r   t  s    @   )
n_segmentsr_   )r    framesr   r_   r"   c             	   C   s   t j|d| j| dd}|dk r(tdg }tdg| j }t|dd |dd D ]@\}}t||||< ||t| t	| t
|| ||d  qVt|S )	ax	  Sub-divide a segmentation by feature clustering.

    Given a set of frame boundaries (``frames``), and a data matrix (``data``),
    each successive interval defined by ``frames`` is partitioned into
    ``n_segments`` by constrained agglomerative clustering.

    .. note::
        If an interval spans fewer than ``n_segments`` frames, then each
        frame becomes a sub-segment.

    Parameters
    ----------
    data : np.ndarray
        Data matrix to use in clustering
    frames : np.ndarray [shape=(n_boundaries,)], dtype=int, non-negative]
        Array of beat or segment boundaries, as provided by
        `librosa.beat.beat_track`,
        `librosa.onset.onset_detect`,
        or `agglomerative`.
    n_segments : int > 0
        Maximum number of frames to sub-divide each interval.
    axis : int
        Axis along which to apply the segmentation.
        By default, the last index (-1) is taken.

    Returns
    -------
    boundaries : np.ndarray [shape=(n_subboundaries,)]
        List of sub-divided segment boundaries

    See Also
    --------
    agglomerative : Temporal segmentation
    librosa.onset.onset_detect : Onset detection
    librosa.beat.beat_track : Beat tracking

    Notes
    -----
    This function caches at level 30.

    Examples
    --------
    Load audio, detect beat frames, and subdivide in twos by CQT

    >>> y, sr = librosa.load(librosa.ex('choice'), duration=10)
    >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, hop_length=512)
    >>> beat_times = librosa.frames_to_time(beats, sr=sr, hop_length=512)
    >>> cqt = np.abs(librosa.cqt(y, sr=sr, hop_length=512))
    >>> subseg = librosa.segment.subsegment(cqt, beats, n_segments=2)
    >>> subseg_t = librosa.frames_to_time(subseg, sr=sr, hop_length=512)

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots()
    >>> librosa.display.specshow(librosa.amplitude_to_db(cqt,
    ...                                                  ref=np.max),
    ...                          y_axis='cqt_hz', x_axis='time', ax=ax)
    >>> lims = ax.get_ylim()
    >>> ax.vlines(beat_times, lims[0], lims[1], color='lime', alpha=0.9,
    ...            linewidth=2, label='Beats')
    >>> ax.vlines(subseg_t, lims[0], lims[1], color='linen', linestyle='--',
    ...            linewidth=1.5, alpha=0.5, label='Sub-beats')
    >>> ax.legend()
    >>> ax.set(title='CQT + Beat and sub-beat markers')
    r   T)Zx_minZx_maxrh   r   z%n_segments must be a positive integerNr*   rv   )r   Z
fix_framesr;   r   rw   rm   zipextendr   rx   r>   r9   rq   )r    r   r   r_   
boundariesZ
idx_slicesZ	seg_startZseg_endr$   r$   r&   r     s"    D"
  )	clustererr_   )r    r   r   r_   r"   c             	   C   s   t | } t | |d} | jd }| j|dfdd} |dkrdtjjj|ddd}tj	j
||tjd}||  dg}|tdt t |jd t  t |S )	a  Bottom-up temporal segmentation.

    Use a temporally-constrained agglomerative clustering routine to partition
    ``data`` into ``k`` contiguous segments.

    Parameters
    ----------
    data : np.ndarray
        data to cluster
    k : int > 0 [scalar]
        number of segments to produce
    clusterer : sklearn.cluster.AgglomerativeClustering, optional
        An optional AgglomerativeClustering object.
        If `None`, a constrained Ward object is instantiated.
    axis : int
        axis along which to cluster.
        By default, the last axis (-1) is chosen.

    Returns
    -------
    boundaries : np.ndarray [shape=(k,)]
        left-boundaries (frame numbers) of detected segments. This
        will always include `0` as the first left-boundary.

    See Also
    --------
    sklearn.cluster.AgglomerativeClustering

    Examples
    --------
    Cluster by chroma similarity, break into 20 segments

    >>> y, sr = librosa.load(librosa.ex('nutcracker'), duration=15)
    >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
    >>> bounds = librosa.segment.agglomerative(chroma, 20)
    >>> bound_times = librosa.frames_to_time(bounds, sr=sr)
    >>> bound_times
    array([ 0.   ,  0.65 ,  1.091,  1.927,  2.438,  2.902,  3.924,
            4.783,  5.294,  5.712,  6.13 ,  7.314,  8.522,  8.916,
            9.66 , 10.844, 11.238, 12.028, 12.492, 14.095])

    Plot the segmentation over the chromagram

    >>> import matplotlib.pyplot as plt
    >>> import matplotlib.transforms as mpt
    >>> fig, ax = plt.subplots()
    >>> trans = mpt.blended_transform_factory(
    ...             ax.transData, ax.transAxes)
    >>> librosa.display.specshow(chroma, y_axis='chroma', x_axis='time', ax=ax)
    >>> ax.vlines(bound_times, 0, 1, color='linen', linestyle='--',
    ...           linewidth=2, alpha=0.9, label='Segment boundaries',
    ...           transform=trans)
    >>> ax.legend()
    >>> ax.set(title='Power spectrogram')
    r   r*   r+   r,   Nr   )Zn_xZn_yZn_z)Z
n_clustersr)   memory)r9   r:   r<   r;   r=   rB   Zfeature_extractionimageZgrid_to_graphclusterAgglomerativeClusteringr   r   rF   r   r|   rJ   diffZlabels_rO   rA   rp   )r    r   r   r_   rT   gridr   r$   r$   r&   r     s    ?

  
*Zhanng       @   )window	max_ratio	min_ratio	n_filters	zero_meanclip)
RrT   r   r   r   r   r   r   r   r"   c                K   s   |dkrd| }n||kr.t d| d| d}	tjt|t||ddD ]t}
t|||
|d}dg| j }|j|d	d< t||}|	dkrtj	j
| |f|}	qPtj|	tj	j
| |f||	d
 qP|rtj|	dd|	d
 t|	S )u9  Multi-angle path enhancement for self- and cross-similarity matrices.

    This function convolves multiple diagonal smoothing filters with a self-similarity (or
    recurrence) matrix R, and aggregates the result by an element-wise maximum.

    Technically, the output is a matrix R_smooth such that::

        R_smooth[i, j] = max_theta (R * filter_theta)[i, j]

    where `*` denotes 2-dimensional convolution, and ``filter_theta`` is a smoothing filter at
    orientation theta.

    This is intended to provide coherent temporal smoothing of self-similarity matrices
    when there are changes in tempo.

    Smoothing filters are generated at evenly spaced orientations between min_ratio and
    max_ratio.

    This function is inspired by the multi-angle path enhancement of [#]_, but differs by
    modeling tempo differences in the space of similarity matrices rather than re-sampling
    the underlying features prior to generating the self-similarity matrix.

    .. [#] Müller, Meinard and Frank Kurth.
            "Enhancing similarity matrices for music audio analysis."
            2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.
            Vol. 5. IEEE, 2006.

    .. note:: if using recurrence_matrix to construct the input similarity matrix, be sure to include the main
              diagonal by setting ``self=True``.  Otherwise, the diagonal will be suppressed, and this is likely to
              produce discontinuities which will pollute the smoothing filter response.

    Parameters
    ----------
    R : np.ndarray
        The self- or cross-similarity matrix to be smoothed.
        Note: sparse inputs are not supported.

        If the recurrence matrix is multi-dimensional, e.g. `shape=(c, n, n)`,
        then enhancement is conducted independently for each leading channel.

    n : int > 0
        The length of the smoothing filter

    window : window specification
        The type of smoothing filter to use.  See `filters.get_window` for more information
        on window specification formats.

    max_ratio : float > 0
        The maximum tempo ratio to support

    min_ratio : float > 0
        The minimum tempo ratio to support.
        If not provided, it will default to ``1/max_ratio``

    n_filters : int >= 1
        The number of different smoothing filters to use, evenly spaced
        between ``min_ratio`` and ``max_ratio``.

        If ``min_ratio = 1/max_ratio`` (the default), using an odd number
        of filters will ensure that the main diagonal (ratio=1) is included.

    zero_mean : bool
        By default, the smoothing filters are non-negative and sum to one (i.e. are averaging
        filters).

        If ``zero_mean=True``, then the smoothing filters are made to sum to zero by subtracting
        a constant value from the non-diagonal coordinates of the filter.  This is primarily
        useful for suppressing blocks while enhancing diagonals.

    clip : bool
        If True, the smoothed similarity matrix will be thresholded at 0, and will not contain
        negative entries.

    **kwargs : additional keyword arguments
        Additional arguments to pass to `scipy.ndimage.convolve`

    Returns
    -------
    R_smooth : np.ndarray, shape=R.shape
        The smoothed self- or cross-similarity matrix

    See Also
    --------
    librosa.filters.diagonal_filter
    recurrence_matrix

    Examples
    --------
    Use a 51-frame diagonal smoothing filter to enhance paths in a recurrence matrix

    >>> y, sr = librosa.load(librosa.ex('nutcracker'))
    >>> hop_length = 2048
    >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length)
    >>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=10, delay=3)
    >>> rec = librosa.segment.recurrence_matrix(chroma_stack, mode='affinity', self=True)
    >>> rec_smooth = librosa.segment.path_enhance(rec, 51, window='hann', n_filters=7)

    Plot the recurrence matrix before and after smoothing

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(ncols=2, sharex=True, sharey=True)
    >>> img = librosa.display.specshow(rec, x_axis='s', y_axis='s',
    ...                          hop_length=hop_length, ax=ax[0])
    >>> ax[0].set(title='Unfiltered recurrence')
    >>> imgpe = librosa.display.specshow(rec_smooth, x_axis='s', y_axis='s',
    ...                          hop_length=hop_length, ax=ax[1])
    >>> ax[1].set(title='Multi-angle enhanced recurrence')
    >>> ax[1].label_outer()
    >>> fig.colorbar(img, ax=ax[0], orientation='horizontal')
    >>> fig.colorbar(imgpe, ax=ax[1], orientation='horizontal')
    Ng      ?z
min_ratio=z cannot exceed max_ratio=r3   )numbase)Zsloper   r   )outr   )r   r9   Zlogspacelog2r   rm   r;   r=   rn   ZndimageZconvolvemaximumr   Z
asanyarray)r   rT   r   r   r   r   r   r   r   ZR_smoothratioZkernelr;   r$   r$   r&   r   v  s6    {
   

  )re   bw_moder   r"   c                 C   s`  t |tjr\|}|j| jkr6td|j d| j d|dk rJtdt||   S t |tt	frt	|}|dkrtd| d|S |d krd}|d	krtd
| d| jd }g }t
|D ]}| |  d }t|dkr|dkrtd| dn|ttjg qt| ||f  d d | }	||	 qtdd |D }
tdd |D }|dkrtt|
stdt	t|
S |dkrnt| j}t| j}t
|D ]d}|
| || j| | j|d  < | j| j| | j|d   }|
| || j| | j|d  < q|dkrRt|| d }n|dkrnt|| d }|dkr\t| j}t| j}t
|D ]d}|| || j| | j|d  < | j| j| | j|d   }|| || j| | j|d  < q|dkrt|| d }n@|dkr:t|| d }n"|dkr\t|| | j d }|S )Nz Invalid matrix bandwidth shape: z.Should be .r   z9Invalid bandwidth. All entries must be strictly positive.zInvalid scalar bandwidth=z. Must be strictly positive.med_k_scalar)r   mean_kgmean_k
mean_k_avggmean_k_avgmean_k_avg_and_pairzInvalid bandwidth='z'. Must be either a positive scalar or one of ['med_k_scalar', 'mean_k', 'gmean_k', 'mean_k_avg', 'gmean_k_avg', 'mean_k_avg_and_pair']r   )r   zThe sample at time point z has no neighborsc                 S   s   g | ]}|d  qS )r*   r$   .0distsr$   r$   r&   
<listcomp>\  s     z(__affinity_bandwidth.<locals>.<listcomp>c                 S   s   g | ]}t |qS r$   )r9   Zmeanr   r$   r$   r&   r   ]  s     z-Cannot estimate bandwidth from an empty graph)r   r   r   r3   r   g      ?)r   r   r   r   r   r      )
isinstancer9   ndarrayr;   r   anyrq   rJ   rA   floatrI   lenappendnansortrL   rp   isfiniteZ	nanmedianZ
empty_liker    Zindptrindices)re   r   r   r   Zscalar_bandwidthrd   Z	knn_distsrX   rY   Zknn_dist_rowZ	dist_to_kZavg_dist_to_first_ksZsigma_i_dataZsigma_j_datarowZcol_idxr   r$   r$   r&   rQ     s    



"

 $


 


rQ   )Tr   )6__doc__r   numpyr9   rn   Zscipy.signalZscipy.ndimagerB   Zsklearn.clusterZsklearn.feature_extractionZsklearn.neighbors_cacher    r   filtersr   Zutil.exceptionsr   typingr	   r
   r   r   r   r   Ztyping_extensionsr   Z_typingr   r   __all__r   rA   strrP   r   r   Z
csc_matrixr   Zspmatrixrf   r   r   ry   r   r   r   r   r   r   r   Z
csr_matrixrQ   r$   r$   r$   r&   <module>   s       6    k NP    [
^ %