U
    -e*                     @  sp  d dl mZ d dlmZmZmZ d dlmZ d dlm	Z	 d dl
mZmZ d dlmZ d dlmZ d dlmZ d d	lmZ d
d
dddddddddZd+ddddddddZd
d
dddddddddZd
d
dddddddddZd,ddddddddZd
d
ddddddddd Zd-ddddddd!d"Zd
d#dddd$d%d&d'Zd
d#dddd(d%d)d*Zd
S ).    )annotations)CallableHashableSequence)conv_sequences)is_none)EditopsOpcodes)_block_similarity)editops)opcodes)
similarityN)	processorscore_cutoffzSequence[Hashable]z(Callable[..., Sequence[Hashable]] | Nonez
int | Noneint)s1s2r   r   returnc                C  sh   |dk	r|| } ||}t | |\} }t| t| }t| |}|d|  }|dks\||kr`|S |d S )a  
    Calculates the minimum number of insertions and deletions
    required to change one sequence into the other. This is equivalent to the
    Levenshtein distance with a substitution weight of 2.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : int, optional
        Maximum distance between s1 and s2, that is
        considered as a result. If the distance is bigger than score_cutoff,
        score_cutoff + 1 is returned instead. Default is None, which deactivates
        this behaviour.

    Returns
    -------
    distance : int
        distance between s1 and s2

    Examples
    --------
    Find the Indel distance between two strings:

    >>> from rapidfuzz.distance import Indel
    >>> Indel.distance("lewenstein", "levenshtein")
    3

    Setting a maximum distance allows the implementation to select
    a more efficient implementation:

    >>> Indel.distance("lewenstein", "levenshtein", score_cutoff=1)
    2

    N      )r   lenlcs_seq_similarity)r   r   r   r   maximumlcs_simdist r   \/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/rapidfuzz/distance/Indel_py.pydistance   s    /
r   zdict[Hashable, int])blockr   r   r   r   c                 C  sD   t |t | }t| ||}|d|  }|d ks8||kr<|S |d S )Nr   r   )r   lcs_seq_block_similarity)r   r   r   r   r   r   r   r   r   r   _block_distanceK   s    r    c                C  s`   |dk	r|| } ||}t | |\} }t| t| }t| |}|| }|dksX||kr\|S dS )a  
    Calculates the Indel similarity in the range [max, 0].

    This is calculated as ``(len1 + len2) - distance``.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : int, optional
        Maximum distance between s1 and s2, that is
        considered as a result. If the similarity is smaller than score_cutoff,
        0 is returned instead. Default is None, which deactivates
        this behaviour.

    Returns
    -------
    similarity : int
        similarity between s1 and s2
    Nr   )r   r   r   )r   r   r   r   r   r   simr   r   r   r   W   s     
r   zfloat | Nonefloatc                C  s|   t | st |rdS |dk	r,|| } ||}t| |\} }t| t| }t| |}|r`|| nd}|dkst||krx|S dS )a8  
    Calculates a normalized levenshtein similarity in the range [1, 0].

    This is calculated as ``distance / (len1 + len2)``.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : float, optional
        Optional argument for a score threshold as a float between 0 and 1.0.
        For norm_dist > score_cutoff 1.0 is returned instead. Default is 1.0,
        which deactivates this behaviour.

    Returns
    -------
    norm_dist : float
        normalized distance between s1 and s2 as a float between 0 and 1.0
          ?Nr   r   )r   r   r   r   )r   r   r   r   r   r   	norm_distr   r   r   normalized_distance   s    
r%   c                 C  sD   t |t | }t| ||}|r(|| nd}|d ks<||kr@|S dS )Nr   r   )r   r    )r   r   r   r   r   r   r$   r   r   r   _block_normalized_distance   s    r&   c                C  sd   t | st |rdS |dk	r,|| } ||}t| |\} }t| |}d| }|dks\||kr`|S dS )a  
    Calculates a normalized indel similarity in the range [0, 1].

    This is calculated as ``1 - normalized_distance``

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : float, optional
        Optional argument for a score threshold as a float between 0 and 1.0.
        For norm_sim < score_cutoff 0 is returned instead. Default is 0,
        which deactivates this behaviour.

    Returns
    -------
    norm_sim : float
        normalized similarity between s1 and s2 as a float between 0 and 1.0

    Examples
    --------
    Find the normalized Indel similarity between two strings:

    >>> from rapidfuzz.distance import Indel
    >>> Indel.normalized_similarity("lewenstein", "levenshtein")
    0.85714285714285

    Setting a score_cutoff allows the implementation to select
    a more efficient implementation:

    >>> Indel.normalized_similarity("lewenstein", "levenshtein", score_cutoff=0.9)
    0.0

    When a different processor is used s1 and s2 do not have to be strings

    >>> Indel.normalized_similarity(["lewenstein"], ["levenshtein"], processor=lambda s: s[0])
    0.8571428571428572
    g        Nr#   r   )r   r   r%   )r   r   r   r   r$   norm_simr   r   r   normalized_similarity   s    2
r(   c                 C  s,   t | ||}d| }|d ks$||kr(|S dS )Nr#   r   )r&   )r   r   r   r   r$   r'   r   r   r   _block_normalized_similarity   s    r)   r   r   )r   r   r   r   c                C  s   t | ||dS )ua  
    Return Editops describing how to turn s1 into s2.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.

    Returns
    -------
    editops : Editops
        edit operations required to turn s1 into s2

    Notes
    -----
    The alignment is calculated using an algorithm of Heikki Hyyrö, which is
    described [6]_. It has a time complexity and memory usage of ``O([N/64] * M)``.

    References
    ----------
    .. [6] Hyyrö, Heikki. "A Note on Bit-Parallel Alignment Computation."
           Stringology (2004).

    Examples
    --------
    >>> from rapidfuzz.distance import Indel
    >>> for tag, src_pos, dest_pos in Indel.editops("qabxcd", "abycdf"):
    ...    print(("%7s s1[%d] s2[%d]" % (tag, src_pos, dest_pos)))
     delete s1[0] s2[0]
     delete s1[3] s2[2]
     insert s1[4] s2[2]
     insert s1[6] s2[5]
    r*   )lcs_seq_editopsr   r   r   r   r   r   r     s    ,r   r	   c                C  s   t | ||dS )u  
    Return Opcodes describing how to turn s1 into s2.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.

    Returns
    -------
    opcodes : Opcodes
        edit operations required to turn s1 into s2

    Notes
    -----
    The alignment is calculated using an algorithm of Heikki Hyyrö, which is
    described [7]_. It has a time complexity and memory usage of ``O([N/64] * M)``.

    References
    ----------
    .. [7] Hyyrö, Heikki. "A Note on Bit-Parallel Alignment Computation."
           Stringology (2004).

    Examples
    --------
    >>> from rapidfuzz.distance import Indel

    >>> a = "qabxcd"
    >>> b = "abycdf"
    >>> for tag, i1, i2, j1, j2 in Indel.opcodes(a, b):
    ...    print(("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %
    ...           (tag, i1, i2, a[i1:i2], j1, j2, b[j1:j2])))
     delete a[0:1] (q) b[0:0] ()
      equal a[1:3] (ab) b[0:2] (ab)
     delete a[3:4] (x) b[2:2] ()
     insert a[4:4] () b[2:3] (y)
      equal a[4:6] (cd) b[3:5] (cd)
     insert a[6:6] () b[5:6] (f)
    r*   )lcs_seq_opcodesr,   r   r   r   r   4  s    2r   )N)N)N)
__future__r   typingr   r   r   Zrapidfuzz._common_pyr   Zrapidfuzz._utilsr   Z!rapidfuzz.distance._initialize_pyr   r	   Zrapidfuzz.distance.LCSseq_pyr
   r   r   r+   r   r-   r   r   r   r    r%   r&   r(   r)   r   r   r   r   <module>   s<   > /1 C 3