U
    -ev4                     @   s0   d dl mZ ddlmZmZ G dd deZdS )   )"_BinaryClassifierCurveDisplayMixin   )auc	roc_curvec                
   @   st   e Zd ZdZddddddZddddddd	Zedd
dddddddddZedd
ddddddddZdS )RocCurveDisplaya  ROC Curve visualization.

    It is recommend to use
    :func:`~sklearn.metrics.RocCurveDisplay.from_estimator` or
    :func:`~sklearn.metrics.RocCurveDisplay.from_predictions` to create
    a :class:`~sklearn.metrics.RocCurveDisplay`. All parameters are
    stored as attributes.

    Read more in the :ref:`User Guide <visualizations>`.

    Parameters
    ----------
    fpr : ndarray
        False positive rate.

    tpr : ndarray
        True positive rate.

    roc_auc : float, default=None
        Area under ROC curve. If None, the roc_auc score is not shown.

    estimator_name : str, default=None
        Name of estimator. If None, the estimator name is not shown.

    pos_label : int, float, bool or str, default=None
        The class considered as the positive class when computing the roc auc
        metrics. By default, `estimators.classes_[1]` is considered
        as the positive class.

        .. versionadded:: 0.24

    Attributes
    ----------
    line_ : matplotlib Artist
        ROC Curve.

    chance_level_ : matplotlib Artist or None
        The chance level line. It is `None` if the chance level is not plotted.

        .. versionadded:: 1.3

    ax_ : matplotlib Axes
        Axes with ROC Curve.

    figure_ : matplotlib Figure
        Figure containing the curve.

    See Also
    --------
    roc_curve : Compute Receiver operating characteristic (ROC) curve.
    RocCurveDisplay.from_estimator : Plot Receiver Operating Characteristic
        (ROC) curve given an estimator and some data.
    RocCurveDisplay.from_predictions : Plot Receiver Operating Characteristic
        (ROC) curve given the true and predicted values.
    roc_auc_score : Compute the area under the ROC curve.

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> import numpy as np
    >>> from sklearn import metrics
    >>> y = np.array([0, 0, 1, 1])
    >>> pred = np.array([0.1, 0.4, 0.35, 0.8])
    >>> fpr, tpr, thresholds = metrics.roc_curve(y, pred)
    >>> roc_auc = metrics.auc(fpr, tpr)
    >>> display = metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc,
    ...                                   estimator_name='example estimator')
    >>> display.plot()
    <...>
    >>> plt.show()
    N)roc_aucestimator_name	pos_labelc                C   s"   || _ || _|| _|| _|| _d S )N)r   fprtprr   r	   )selfr
   r   r   r   r	    r   `/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/sklearn/metrics/_plot/roc_curve.py__init__N   s
    zRocCurveDisplay.__init__F)nameplot_chance_levelchance_level_kwc                K   s>  | j ||d\| _| _}i }| jdk	rH|dk	rH| d| jdd|d< n.| jdk	rfd| jd|d< n|dk	rv||d< |jf | dd	d
d}|dk	r|jf | | jj| j| jf|\| _| j	dk	rd| j	 dnd}d| }	d| }
| jj
|	|
d |r| jjd|\| _nd| _d|ks,d|kr:| jjdd | S )a  Plot visualization.

        Extra keyword arguments will be passed to matplotlib's ``plot``.

        Parameters
        ----------
        ax : matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        name : str, default=None
            Name of ROC Curve for labeling. If `None`, use `estimator_name` if
            not `None`, otherwise no labeling is shown.

        plot_chance_level : bool, default=False
            Whether to plot the chance level.

            .. versionadded:: 1.3

        chance_level_kw : dict, default=None
            Keyword arguments to be passed to matplotlib's `plot` for rendering
            the chance level line.

            .. versionadded:: 1.3

        **kwargs : dict
            Keyword arguments to be passed to matplotlib's `plot`.

        Returns
        -------
        display : :class:`~sklearn.metrics.RocCurveDisplay`
            Object that stores computed values.
        )axr   Nz (AUC = z0.2f)labelzAUC = zChance level (AUC = 0.5)kz--)r   colorZ	linestylez (Positive label:  zFalse Positive RatezTrue Positive Rate)xlabelylabel       zlower right)loc)r   r   )Z_validate_plot_paramsZax_Zfigure_r   updateplotr
   r   Zline_r	   setZchance_level_Zlegend)r   r   r   r   r   kwargsZline_kwargsZchance_level_line_kwZinfo_pos_labelr   r   r   r   r   r    U   s@    *
   
zRocCurveDisplay.plotTauto)sample_weightdrop_intermediateresponse_methodr	   r   r   r   r   c                K   s@   | j ||||||d\}}}| jf ||||||	||
|d	|S )a;  Create a ROC Curve display from an estimator.

        Parameters
        ----------
        estimator : estimator instance
            Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
            in which the last estimator is a classifier.

        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Input values.

        y : array-like of shape (n_samples,)
            Target values.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        drop_intermediate : bool, default=True
            Whether to drop some suboptimal thresholds which would not appear
            on a plotted ROC curve. This is useful in order to create lighter
            ROC curves.

        response_method : {'predict_proba', 'decision_function', 'auto'}                 default='auto'
            Specifies whether to use :term:`predict_proba` or
            :term:`decision_function` as the target response. If set to 'auto',
            :term:`predict_proba` is tried first and if it does not exist
            :term:`decision_function` is tried next.

        pos_label : int, float, bool or str, default=None
            The class considered as the positive class when computing the roc auc
            metrics. By default, `estimators.classes_[1]` is considered
            as the positive class.

        name : str, default=None
            Name of ROC Curve for labeling. If `None`, use the name of the
            estimator.

        ax : matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is created.

        plot_chance_level : bool, default=False
            Whether to plot the chance level.

            .. versionadded:: 1.3

        chance_level_kw : dict, default=None
            Keyword arguments to be passed to matplotlib's `plot` for rendering
            the chance level line.

            .. versionadded:: 1.3

        **kwargs : dict
            Keyword arguments to be passed to matplotlib's `plot`.

        Returns
        -------
        display : :class:`~sklearn.metrics.RocCurveDisplay`
            The ROC Curve display.

        See Also
        --------
        roc_curve : Compute Receiver operating characteristic (ROC) curve.
        RocCurveDisplay.from_predictions : ROC Curve visualization given the
            probabilities of scores of a classifier.
        roc_auc_score : Compute the area under the ROC curve.

        Examples
        --------
        >>> import matplotlib.pyplot as plt
        >>> from sklearn.datasets import make_classification
        >>> from sklearn.metrics import RocCurveDisplay
        >>> from sklearn.model_selection import train_test_split
        >>> from sklearn.svm import SVC
        >>> X, y = make_classification(random_state=0)
        >>> X_train, X_test, y_train, y_test = train_test_split(
        ...     X, y, random_state=0)
        >>> clf = SVC(random_state=0).fit(X_train, y_train)
        >>> RocCurveDisplay.from_estimator(
        ...    clf, X_test, y_test)
        <...>
        >>> plt.show()
        )r&   r	   r   )	y_truey_predr$   r%   r   r   r	   r   r   )Z!_validate_and_get_response_valuesfrom_predictions)clsZ	estimatorXyr$   r%   r&   r	   r   r   r   r   r"   r(   r   r   r   from_estimator   s*    d	
zRocCurveDisplay.from_estimator)r$   r%   r	   r   r   r   r   c                K   sf   | j |||||d\}}t|||||d\}}}t||}t|||||d}|jf ||||	d|
S )uz  Plot ROC curve given the true and predicted values.

        Read more in the :ref:`User Guide <visualizations>`.

        .. versionadded:: 1.0

        Parameters
        ----------
        y_true : array-like of shape (n_samples,)
            True labels.

        y_pred : array-like of shape (n_samples,)
            Target scores, can either be probability estimates of the positive
            class, confidence values, or non-thresholded measure of decisions
            (as returned by “decision_function” on some classifiers).

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        drop_intermediate : bool, default=True
            Whether to drop some suboptimal thresholds which would not appear
            on a plotted ROC curve. This is useful in order to create lighter
            ROC curves.

        pos_label : int, float, bool or str, default=None
            The label of the positive class. When `pos_label=None`, if `y_true`
            is in {-1, 1} or {0, 1}, `pos_label` is set to 1, otherwise an
            error will be raised.

        name : str, default=None
            Name of ROC curve for labeling. If `None`, name will be set to
            `"Classifier"`.

        ax : matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        plot_chance_level : bool, default=False
            Whether to plot the chance level.

            .. versionadded:: 1.3

        chance_level_kw : dict, default=None
            Keyword arguments to be passed to matplotlib's `plot` for rendering
            the chance level line.

            .. versionadded:: 1.3

        **kwargs : dict
            Additional keywords arguments passed to matplotlib `plot` function.

        Returns
        -------
        display : :class:`~sklearn.metrics.RocCurveDisplay`
            Object that stores computed values.

        See Also
        --------
        roc_curve : Compute Receiver operating characteristic (ROC) curve.
        RocCurveDisplay.from_estimator : ROC Curve visualization given an
            estimator and some data.
        roc_auc_score : Compute the area under the ROC curve.

        Examples
        --------
        >>> import matplotlib.pyplot as plt
        >>> from sklearn.datasets import make_classification
        >>> from sklearn.metrics import RocCurveDisplay
        >>> from sklearn.model_selection import train_test_split
        >>> from sklearn.svm import SVC
        >>> X, y = make_classification(random_state=0)
        >>> X_train, X_test, y_train, y_test = train_test_split(
        ...     X, y, random_state=0)
        >>> clf = SVC(random_state=0).fit(X_train, y_train)
        >>> y_pred = clf.decision_function(X_test)
        >>> RocCurveDisplay.from_predictions(
        ...    y_test, y_pred)
        <...>
        >>> plt.show()
        )r$   r	   r   )r	   r$   r%   )r
   r   r   r   r	   )r   r   r   r   )Z!_validate_from_predictions_paramsr   r   r   r    )r*   r'   r(   r$   r%   r	   r   r   r   r   r"   Zpos_label_validatedr
   r   _r   Zvizr   r   r   r)   #  s<    _    

z RocCurveDisplay.from_predictions)N)	__name__
__module____qualname____doc__r   r    classmethodr-   r)   r   r   r   r   r      s6   H	 Tyr   N)Zutils._plottingr   Z_rankingr   r   r   r   r   r   r   <module>   s   