U
    -e;1                     @   s   d dl mZ d dlmZmZ d dlmZ d dlmZm	Z	 d dl
mZ d dlmZ dddZG d	d
 d
eZG dd deZG dd deZdS )    )S)FunctionArgumentIndexError)Dummy)gammadigamma)catalan)	conjugatec                 C   s4   ddl m}m} ||kr |dS || ||||S d S )Nr   )betaincmpf)Zmpmathr
   r   )abx1x2regr
   r    r   g/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/sympy/functions/special/beta_functions.pybetainc_mpmath_fix	   s    r   c                   @   s\   e Zd ZdZdZdd ZedddZdd	 Zd
d Z	dd Z
dd ZdddZdd ZdS )betaa	  
    The beta integral is called the Eulerian integral of the first kind by
    Legendre:

    .. math::
        \mathrm{B}(x,y)  \int^{1}_{0} t^{x-1} (1-t)^{y-1} \mathrm{d}t.

    Explanation
    ===========

    The Beta function or Euler's first integral is closely associated
    with the gamma function. The Beta function is often used in probability
    theory and mathematical statistics. It satisfies properties like:

    .. math::
        \mathrm{B}(a,1) = \frac{1}{a} \\
        \mathrm{B}(a,b) = \mathrm{B}(b,a)  \\
        \mathrm{B}(a,b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}

    Therefore for integral values of $a$ and $b$:

    .. math::
        \mathrm{B} = \frac{(a-1)! (b-1)!}{(a+b-1)!}

    A special case of the Beta function when `x = y` is the
    Central Beta function. It satisfies properties like:

    .. math::
        \mathrm{B}(x) = 2^{1 - 2x}\mathrm{B}(x, \frac{1}{2})
        \mathrm{B}(x) = 2^{1 - 2x} cos(\pi x) \mathrm{B}(\frac{1}{2} - x, x)
        \mathrm{B}(x) = \int_{0}^{1} \frac{t^x}{(1 + t)^{2x}} dt
        \mathrm{B}(x) = \frac{2}{x} \prod_{n = 1}^{\infty} \frac{n(n + 2x)}{(n + x)^2}

    Examples
    ========

    >>> from sympy import I, pi
    >>> from sympy.abc import x, y

    The Beta function obeys the mirror symmetry:

    >>> from sympy import beta, conjugate
    >>> conjugate(beta(x, y))
    beta(conjugate(x), conjugate(y))

    Differentiation with respect to both $x$ and $y$ is supported:

    >>> from sympy import beta, diff
    >>> diff(beta(x, y), x)
    (polygamma(0, x) - polygamma(0, x + y))*beta(x, y)

    >>> diff(beta(x, y), y)
    (polygamma(0, y) - polygamma(0, x + y))*beta(x, y)

    >>> diff(beta(x), x)
    2*(polygamma(0, x) - polygamma(0, 2*x))*beta(x, x)

    We can numerically evaluate the Beta function to
    arbitrary precision for any complex numbers x and y:

    >>> from sympy import beta
    >>> beta(pi).evalf(40)
    0.02671848900111377452242355235388489324562

    >>> beta(1 + I).evalf(20)
    -0.2112723729365330143 - 0.7655283165378005676*I

    See Also
    ========

    gamma: Gamma function.
    uppergamma: Upper incomplete gamma function.
    lowergamma: Lower incomplete gamma function.
    polygamma: Polygamma function.
    loggamma: Log Gamma function.
    digamma: Digamma function.
    trigamma: Trigamma function.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Beta_function
    .. [2] https://mathworld.wolfram.com/BetaFunction.html
    .. [3] https://dlmf.nist.gov/5.12

    Tc                 C   sd   | j \}}|dkr0t||t|t||   S |dkrVt||t|t||   S t| |d S )N      )argsr   r   r   )selfargindexxyr   r   r   fdiffm   s    
z
beta.fdiffNc                 C   s4   |d krt ||S |jr0|jr0t ||dd S d S )NF)evaluate)r   Z	is_Numberdoit)clsr   r   r   r   r   evalx   s    
z	beta.evalc                 K   s  | j d  }}t| j dk}|r*| j d n| j d  }}|ddr\|jf |}|jf |}|jsh|jrntjS |tjkrd| S |tjkrd| S ||d krd|| t|  S || }|j	r|j
r|j	dkr|j	dkrtjS ||kr||kr|s| S t||S )Nr   r   deepTF)r   lengetr   is_zeror   ZComplexInfinityZOner   
is_integerZis_negativeZZeror   )r   hintsr   ZxoldZsingle_argumentr   Zyoldsr   r   r   r      s,    

z	beta.doitc                 K   s&   | j \}}t|t| t||  S N)r   r   )r   r&   r   r   r   r   r   _eval_expand_func   s    
zbeta._eval_expand_funcc                 C   s   | j d jo| j d jS Nr   r   )r   is_realr   r   r   r   _eval_is_real   s    zbeta._eval_is_realc                 C   s    |  | jd  | jd  S r*   )funcr   r	   r,   r   r   r   _eval_conjugate   s    zbeta._eval_conjugatec                 K   s   | j f |S r(   )r)   )r   r   r   Z	piecewisekwargsr   r   r   _eval_rewrite_as_gamma   s    zbeta._eval_rewrite_as_gammac                 K   s<   ddl m} td}|||d  d| |d   |ddfS Nr   )Integraltr   Zsympy.integrals.integralsr3   r   )r   r   r   r0   r3   r4   r   r   r   _eval_rewrite_as_Integral   s    zbeta._eval_rewrite_as_Integral)N)T)__name__
__module____qualname____doc__
unbranchedr   classmethodr    r   r)   r-   r/   r1   r6   r   r   r   r   r      s   V
r   c                   @   sH   e Zd ZdZdZdZdd Zdd Zdd	 Zd
d Z	dd Z
dd ZdS )r
   a[  
    The Generalized Incomplete Beta function is defined as

    .. math::
        \mathrm{B}_{(x_1, x_2)}(a, b) = \int_{x_1}^{x_2} t^{a - 1} (1 - t)^{b - 1} dt

    The Incomplete Beta function is a special case
    of the Generalized Incomplete Beta function :

    .. math:: \mathrm{B}_z (a, b) = \mathrm{B}_{(0, z)}(a, b)

    The Incomplete Beta function satisfies :

    .. math:: \mathrm{B}_z (a, b) = (-1)^a \mathrm{B}_{\frac{z}{z - 1}} (a, 1 - a - b)

    The Beta function is a special case of the Incomplete Beta function :

    .. math:: \mathrm{B}(a, b) = \mathrm{B}_{1}(a, b)

    Examples
    ========

    >>> from sympy import betainc, symbols, conjugate
    >>> a, b, x, x1, x2 = symbols('a b x x1 x2')

    The Generalized Incomplete Beta function is given by:

    >>> betainc(a, b, x1, x2)
    betainc(a, b, x1, x2)

    The Incomplete Beta function can be obtained as follows:

    >>> betainc(a, b, 0, x)
    betainc(a, b, 0, x)

    The Incomplete Beta function obeys the mirror symmetry:

    >>> conjugate(betainc(a, b, x1, x2))
    betainc(conjugate(a), conjugate(b), conjugate(x1), conjugate(x2))

    We can numerically evaluate the Incomplete Beta function to
    arbitrary precision for any complex numbers a, b, x1 and x2:

    >>> from sympy import betainc, I
    >>> betainc(2, 3, 4, 5).evalf(10)
    56.08333333
    >>> betainc(0.75, 1 - 4*I, 0, 2 + 3*I).evalf(25)
    0.2241657956955709603655887 + 0.3619619242700451992411724*I

    The Generalized Incomplete Beta function can be expressed
    in terms of the Generalized Hypergeometric function.

    >>> from sympy import hyper
    >>> betainc(a, b, x1, x2).rewrite(hyper)
    (-x1**a*hyper((a, 1 - b), (a + 1,), x1) + x2**a*hyper((a, 1 - b), (a + 1,), x2))/a

    See Also
    ========

    beta: Beta function
    hyper: Generalized Hypergeometric function

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function
    .. [2] https://dlmf.nist.gov/8.17
    .. [3] https://functions.wolfram.com/GammaBetaErf/Beta4/
    .. [4] https://functions.wolfram.com/GammaBetaErf/BetaRegularized4/02/

       Tc                 C   sf   | j \}}}}|dkr4d| |d   ||d   S |dkrXd| |d  ||d   S t| |d S N   r   r=   )r   r   r   r   r   r   r   r   r   r   r   r      s    zbetainc.fdiffc                 C   s
   t | jfS r(   )r   r   r,   r   r   r   _eval_mpmath  s    zbetainc._eval_mpmathc                 C   s   t dd | jD rdS d S )Nc                 s   s   | ]}|j V  qd S r(   r+   .0argr   r   r   	<genexpr>  s     z(betainc._eval_is_real.<locals>.<genexpr>Tallr   r,   r   r   r   r-     s    zbetainc._eval_is_realc                 C   s   | j tt| j S r(   r.   mapr	   r   r,   r   r   r   r/   
  s    zbetainc._eval_conjugatec                 K   s<   ddl m} td}|||d  d| |d   |||fS r2   r5   )r   r   r   r   r   r0   r3   r4   r   r   r   r6     s    z!betainc._eval_rewrite_as_Integralc                 K   sT   ddl m} || ||d| f|d f| || ||d| f|d f|  | S Nr   )hyperr   )sympy.functions.special.hyperrL   )r   r   r   r   r   r0   rL   r   r   r   _eval_rewrite_as_hyper  s    zbetainc._eval_rewrite_as_hyperN)r7   r8   r9   r:   nargsr;   r   rA   r-   r/   r6   rN   r   r   r   r   r
      s   Gr
   c                   @   sP   e Zd ZdZdZdZdd Zdd Zdd	 Zd
d Z	dd Z
dd Zdd ZdS )betainc_regularizeda  
    The Generalized Regularized Incomplete Beta function is given by

    .. math::
        \mathrm{I}_{(x_1, x_2)}(a, b) = \frac{\mathrm{B}_{(x_1, x_2)}(a, b)}{\mathrm{B}(a, b)}

    The Regularized Incomplete Beta function is a special case
    of the Generalized Regularized Incomplete Beta function :

    .. math:: \mathrm{I}_z (a, b) = \mathrm{I}_{(0, z)}(a, b)

    The Regularized Incomplete Beta function is the cumulative distribution
    function of the beta distribution.

    Examples
    ========

    >>> from sympy import betainc_regularized, symbols, conjugate
    >>> a, b, x, x1, x2 = symbols('a b x x1 x2')

    The Generalized Regularized Incomplete Beta
    function is given by:

    >>> betainc_regularized(a, b, x1, x2)
    betainc_regularized(a, b, x1, x2)

    The Regularized Incomplete Beta function
    can be obtained as follows:

    >>> betainc_regularized(a, b, 0, x)
    betainc_regularized(a, b, 0, x)

    The Regularized Incomplete Beta function
    obeys the mirror symmetry:

    >>> conjugate(betainc_regularized(a, b, x1, x2))
    betainc_regularized(conjugate(a), conjugate(b), conjugate(x1), conjugate(x2))

    We can numerically evaluate the Regularized Incomplete Beta function
    to arbitrary precision for any complex numbers a, b, x1 and x2:

    >>> from sympy import betainc_regularized, pi, E
    >>> betainc_regularized(1, 2, 0, 0.25).evalf(10)
    0.4375000000
    >>> betainc_regularized(pi, E, 0, 1).evalf(5)
    1.00000

    The Generalized Regularized Incomplete Beta function can be
    expressed in terms of the Generalized Hypergeometric function.

    >>> from sympy import hyper
    >>> betainc_regularized(a, b, x1, x2).rewrite(hyper)
    (-x1**a*hyper((a, 1 - b), (a + 1,), x1) + x2**a*hyper((a, 1 - b), (a + 1,), x2))/(a*beta(a, b))

    See Also
    ========

    beta: Beta function
    hyper: Generalized Hypergeometric function

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function
    .. [2] https://dlmf.nist.gov/8.17
    .. [3] https://functions.wolfram.com/GammaBetaErf/Beta4/
    .. [4] https://functions.wolfram.com/GammaBetaErf/BetaRegularized4/02/

    r=   Tc                 C   s   t | ||||S r(   )r   __new__)r   r   r   r   r   r   r   r   rQ   c  s    zbetainc_regularized.__new__c                 C   s   t | jtdffS )Nr   )r   r   r   r,   r   r   r   rA   f  s    z betainc_regularized._eval_mpmathc                 C   sz   | j \}}}}|dkr>d| |d   ||d   t|| S |dkrld| |d  ||d   t|| S t| |d S r>   )r   r   r   r@   r   r   r   r   i  s    (&zbetainc_regularized.fdiffc                 C   s   t dd | jD rdS d S )Nc                 s   s   | ]}|j V  qd S r(   rB   rC   r   r   r   rF   u  s     z4betainc_regularized._eval_is_real.<locals>.<genexpr>TrG   r,   r   r   r   r-   t  s    z!betainc_regularized._eval_is_realc                 C   s   | j tt| j S r(   rI   r,   r   r   r   r/   x  s    z#betainc_regularized._eval_conjugatec           
      K   sT   ddl m} td}||d  d| |d   }|||||f}	|	|||ddf S r2   r5   )
r   r   r   r   r   r0   r3   r4   Z	integrandexprr   r   r   r6   {  s
    z-betainc_regularized._eval_rewrite_as_Integralc                 K   sb   ddl m} || ||d| f|d f| || ||d| f|d f|  | }|t|| S rK   )rM   rL   r   )r   r   r   r   r   r0   rL   rR   r   r   r   rN     s    Hz*betainc_regularized._eval_rewrite_as_hyperN)r7   r8   r9   r:   rO   r;   rQ   rA   r   r-   r/   r6   rN   r   r   r   r   rP     s   ErP   N)r   )Z
sympy.corer   Zsympy.core.functionr   r   Zsympy.core.symbolr   Z'sympy.functions.special.gamma_functionsr   r   Z%sympy.functions.combinatorial.numbersr   Z$sympy.functions.elementary.complexesr	   r   r   r
   rP   r   r   r   r   <module>   s   
 m