U
    -e-                    @   s  d Z ddlmZ ddlmZ ddlmZ ddlmZm	Z	m
Z
 ddlmZmZmZ ddlmZ ddlmZ dd	lmZ dd
lmZ ddlmZ ddlmZmZmZ ddlmZmZm Z  ddl!m"Z"m#Z# ddl$m%Z%m&Z& ddl'm(Z(m)Z)m*Z* ddl+m,Z,m-Z- ddl.m/Z/m0Z0m1Z1 ddl2m3Z3m4Z4 dDddZ5G dd deZ6G dd deZ7G dd deZ8G dd deZ9G dd  d eZ:G d!d" d"eZ;G d#d$ d$eZ<G d%d& d&eZ=G d'd( d(eZ>d)d* Z?G d+d, d,eZ@G d-d. d.eZAG d/d0 d0eZBG d1d2 d2eBZCG d3d4 d4eBZDG d5d6 d6eBZEG d7d8 d8eBZFG d9d: d:eZGG d;d< d<eGZHG d=d> d>eGZIG d?d@ d@eZJG dAdB dBeZKdCS )Ez This module contains various functions that are special cases
    of incomplete gamma functions. It should probably be renamed.     )
EulerGamma)Add)cacheit)FunctionArgumentIndexError
expand_mul)IpiRational)is_eq)Pow)S)Symbol)sympify)	factorial
factorial2RisingFactorial)
polar_liftre
unpolarify)ceilingfloor)sqrtroot)explog	exp_polar)coshsinh)cossinsinc)hypermeijergTc                 K   s   | j d jr6|r,d|d< | j|f|tjfS | tjfS |rX| j d j|f| \}}n| j d  \}}| |t|  | |t|   d }| |t|  | |t|   dt  }||fS )Nr   Fcomplex   )argsis_extended_realexpandr   Zeroas_real_imagfuncr   )selfdeephintsxyr   Zim r1   h/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/sympy/functions/special/error_functions.pyreal_to_real_as_real_imag   s    
(,r3   c                       s   e Zd ZdZdZd,ddZd-ddZedd	 Ze	e
d
d Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zd.d!d"Zd#d$ Zd%d& Zd/d(d)Z fd*d+ZeZ  ZS )0erfa.  
    The Gauss error function.

    Explanation
    ===========

    This function is defined as:

    .. math ::
        \mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \mathrm{d}t.

    Examples
    ========

    >>> from sympy import I, oo, erf
    >>> from sympy.abc import z

    Several special values are known:

    >>> erf(0)
    0
    >>> erf(oo)
    1
    >>> erf(-oo)
    -1
    >>> erf(I*oo)
    oo*I
    >>> erf(-I*oo)
    -oo*I

    In general one can pull out factors of -1 and $I$ from the argument:

    >>> erf(-z)
    -erf(z)

    The error function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(erf(z))
    erf(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(erf(z), z)
    2*exp(-z**2)/sqrt(pi)

    We can numerically evaluate the error function to arbitrary precision
    on the whole complex plane:

    >>> erf(4).evalf(30)
    0.999999984582742099719981147840

    >>> erf(-4*I).evalf(30)
    -1296959.73071763923152794095062*I

    See Also
    ========

    erfc: Complementary error function.
    erfi: Imaginary error function.
    erf2: Two-argument error function.
    erfinv: Inverse error function.
    erfcinv: Inverse Complementary error function.
    erf2inv: Inverse two-argument error function.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Error_function
    .. [2] https://dlmf.nist.gov/7
    .. [3] https://mathworld.wolfram.com/Erf.html
    .. [4] https://functions.wolfram.com/GammaBetaErf/Erf

    T   c                 C   s6   |dkr(dt | jd d   tt S t| |d S Nr5   r%   r   r   r&   r   r	   r   r,   argindexr1   r1   r2   fdiff   s     z	erf.fdiffc                 C   s   t S z8
        Returns the inverse of this function.

        erfinvr8   r1   r1   r2   inverse   s    zerf.inversec                 C   s   |j rB|tjkrtjS |tjkr&tjS |tjkr6tjS |jrBtjS t	|t
rV|jd S t	|trptj|jd  S |jr|tjS t	|tr|jd jr|jd S |t}|tjtjfkr|S | r| |  S d S Nr   r5   )	is_Numberr   NaNInfinityOneNegativeInfinityNegativeOneis_zeror)   
isinstancer=   r&   erfcinverf2invextract_multiplicativelyr   could_extract_minus_signclsargtr1   r1   r2   eval   s,    







zerf.evalc                 G   s   | dk s| d dkrt jS t|}t| d t d }t|dkrd|d  |d  | d  | |  S dt j|  ||   | t| tt  S d S Nr   r%   r5   )	r   r)   r   r   lenrE   r   r   r	   nr/   previous_termskr1   r1   r2   taylor_term   s    "zerf.taylor_termc                 C   s   |  | jd  S Nr   r+   r&   	conjugater,   r1   r1   r2   _eval_conjugate   s    zerf._eval_conjugatec                 C   s   | j d jS rY   r&   r'   r\   r1   r1   r2   _eval_is_real   s    zerf._eval_is_realc                 C   s    | j d jrdS | j d jS d S Nr   T)r&   	is_finiter'   r\   r1   r1   r2   _eval_is_finite   s    zerf._eval_is_finitec                 C   s   | j d jS rY   r&   rF   r\   r1   r1   r2   _eval_is_zero   s    zerf._eval_is_zeroc                 K   s:   ddl m} t|d | tj|tj|d tt   S Nr   
uppergammar%   'sympy.functions.special.gamma_functionsrg   r   r   rC   Halfr	   r,   zkwargsrg   r1   r1   r2   _eval_rewrite_as_uppergamma   s    zerf._eval_rewrite_as_uppergammac                 K   s4   t jt | tt }t jt t|tt|   S Nr   rC   r   r   r	   fresnelcfresnelsr,   rl   rm   rN   r1   r1   r2   _eval_rewrite_as_fresnels   s    zerf._eval_rewrite_as_fresnelsc                 K   s4   t jt | tt }t jt t|tt|   S ro   rp   rs   r1   r1   r2   _eval_rewrite_as_fresnelc   s    zerf._eval_rewrite_as_fresnelcc                 K   s.   |t t ttjgg dgtddg|d  S Nr   r%   r   r	   r#   r   rj   r
   r,   rl   rm   r1   r1   r2   _eval_rewrite_as_meijerg   s    zerf._eval_rewrite_as_meijergc                 K   s.   d| t t ttjgdtj g|d   S Nr%      r   r	   r"   r   rj   ry   r1   r1   r2   _eval_rewrite_as_hyper   s    zerf._eval_rewrite_as_hyperc                 K   s,   t |d | |ttj|d  t t  S Nr%   r   expintr   rj   r	   ry   r1   r1   r2   _eval_rewrite_as_expint   s    zerf._eval_rewrite_as_expintNc                 K   sb   ddl m} |rF|||tj}|tjkrFtjt| t|d    S tjt|t|d    S )Nr   )limitr%   )	Zsympy.series.limitsr   r   rB   rD   rE   _erfsr   rC   )r,   rl   limitvarrm   r   Zlimr1   r1   r2   _eval_rewrite_as_tractable   s    
zerf._eval_rewrite_as_tractablec                 K   s   t jt| S ro   )r   rC   erfcry   r1   r1   r2   _eval_rewrite_as_erfc   s    zerf._eval_rewrite_as_erfcc                 K   s   t  tt |  S ro   r   erfiry   r1   r1   r2   _eval_rewrite_as_erfi   s    zerf._eval_rewrite_as_erfir   c                 C   sv   | j d j|||d}||d}|tjkrH|j|d|dkr@dndd}||jkrh|jrhd| tt	 S | 
|S d S )Nr   logxcdirrw   -+dirr%   )r&   as_leading_termsubsr   ComplexInfinityr   free_symbolsrF   r   r	   r+   r,   r/   r   r   rN   arg0r1   r1   r2   _eval_as_leading_term   s    
zerf._eval_as_leading_termc              	      s   ddl m} |d }|tjtjfkr| jd  z |\}}W n ttfk
r\   |  Y S X | }|j	rt
|| }	 fddt|	D |d |	  |g }
tjt d  tt t|
   S tt| ||||S )Nr   Orderc                    s>   g | ]6}t j| td | d   d | d  d |   qS r%   r5   )r   rE   r   .0rW   rl   r1   r2   
<listcomp>  s   z%erf._eval_aseries.<locals>.<listcomp>r5   r%   )sympy.series.orderr   r   rB   rD   r&   Zleadterm
ValueErrorNotImplementedErroris_positiver   rangerC   r   r   r	   r   superr4   _eval_aseries)r,   rU   args0r/   r   r   point_exZnewns	__class__r   r2   r      s$    


$zerf._eval_aseries)r5   )r5   )N)Nr   )__name__
__module____qualname____doc__
unbranchedr:   r>   classmethodrP   staticmethodr   rX   r]   r_   rb   rd   rn   rt   ru   rz   r~   r   r   r   r   r   r   r3   r*   __classcell__r1   r1   r   r2   r4   0   s2   L


!

r4   c                   @   s   e Zd ZdZdZd*ddZd+ddZedd	 Ze	e
d
d Zdd Zdd Zd,ddZdd Zdd Zdd Zdd Zdd Zdd Zdd  Zd!d" Zd#d$ Zd-d&d'ZeZd(d) ZdS ).r   a&  
    Complementary Error Function.

    Explanation
    ===========

    The function is defined as:

    .. math ::
        \mathrm{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} \mathrm{d}t

    Examples
    ========

    >>> from sympy import I, oo, erfc
    >>> from sympy.abc import z

    Several special values are known:

    >>> erfc(0)
    1
    >>> erfc(oo)
    0
    >>> erfc(-oo)
    2
    >>> erfc(I*oo)
    -oo*I
    >>> erfc(-I*oo)
    oo*I

    The error function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(erfc(z))
    erfc(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(erfc(z), z)
    -2*exp(-z**2)/sqrt(pi)

    It also follows

    >>> erfc(-z)
    2 - erfc(z)

    We can numerically evaluate the complementary error function to arbitrary
    precision on the whole complex plane:

    >>> erfc(4).evalf(30)
    0.0000000154172579002800188521596734869

    >>> erfc(4*I).evalf(30)
    1.0 - 1296959.73071763923152794095062*I

    See Also
    ========

    erf: Gaussian error function.
    erfi: Imaginary error function.
    erf2: Two-argument error function.
    erfinv: Inverse error function.
    erfcinv: Inverse Complementary error function.
    erf2inv: Inverse two-argument error function.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Error_function
    .. [2] https://dlmf.nist.gov/7
    .. [3] https://mathworld.wolfram.com/Erfc.html
    .. [4] https://functions.wolfram.com/GammaBetaErf/Erfc

    Tr5   c                 C   s6   |dkr(dt | jd d   tt S t| |d S )Nr5   rR   r   r%   r7   r8   r1   r1   r2   r:   `  s     z
erfc.fdiffc                 C   s   t S r;   rH   r8   r1   r1   r2   r>   f  s    zerfc.inversec                 C   s   |j r2|tjkrtjS |tjkr&tjS |jr2tjS t|trLtj|j	d  S t|t
r`|j	d S |jrltjS |t}|tjtjfkr| S | rd| |  S d S )Nr   r%   )r@   r   rA   rB   r)   rF   rC   rG   r=   r&   rH   rJ   r   rD   rK   rL   r1   r1   r2   rP   m  s$    





z	erfc.evalc                 G   s   | dkrt jS | dk s"| d dkr(t jS t|}t| d t d }t|dkrr|d  |d  | d  | |  S dt j|  ||   | t| tt	  S d S rQ   )
r   rC   r)   r   r   rS   rE   r   r   r	   rT   r1   r1   r2   rX     s    "zerfc.taylor_termc                 C   s   |  | jd  S rY   rZ   r\   r1   r1   r2   r]     s    zerfc._eval_conjugatec                 C   s   | j d jS rY   r^   r\   r1   r1   r2   r_     s    zerfc._eval_is_realNc                 K   s   |  tj dd|dS N	tractableT)r-   r   rewriter4   r,   rl   r   rm   r1   r1   r2   r     s    zerfc._eval_rewrite_as_tractablec                 K   s   t jt| S ro   )r   rC   r4   ry   r1   r1   r2   _eval_rewrite_as_erf  s    zerfc._eval_rewrite_as_erfc                 K   s   t jttt|   S ro   )r   rC   r   r   ry   r1   r1   r2   r     s    zerfc._eval_rewrite_as_erfic                 K   s:   t jt | tt }t jt jt t|tt|    S ro   rp   rs   r1   r1   r2   rt     s    zerfc._eval_rewrite_as_fresnelsc                 K   s:   t jt | tt }t jt jt t|tt|    S ro   rp   rs   r1   r1   r2   ru     s    zerfc._eval_rewrite_as_fresnelcc              	   K   s4   t j|tt tt jgg dgtddg|d   S rv   )r   rC   r   r	   r#   rj   r
   ry   r1   r1   r2   rz     s    zerfc._eval_rewrite_as_meijergc                 K   s4   t jd| tt tt jgdt j g|d    S r{   )r   rC   r   r	   r"   rj   ry   r1   r1   r2   r~     s    zerfc._eval_rewrite_as_hyperc                 K   s@   ddl m} tjt|d | tj|tj|d tt    S re   )ri   rg   r   rC   r   rj   r	   rk   r1   r1   r2   rn     s    z erfc._eval_rewrite_as_uppergammac                 K   s2   t jt|d |  |tt j|d  tt  S r   )r   rC   r   r   rj   r	   ry   r1   r1   r2   r     s    zerfc._eval_rewrite_as_expintc                 K   s
   |  tS ro   r   r,   r.   r1   r1   r2   _eval_expand_func  s    zerfc._eval_expand_funcr   c                 C   sb   | j d j|||d}||d}|tjkrH|j|d|dkr@dndd}|jrTtjS | |S d S )Nr   r   rw   r   r   r   )	r&   r   r   r   r   r   rF   rC   r+   r   r1   r1   r2   r     s    
zerfc._eval_as_leading_termc                 C   s   t jt| j |||| S ro   )r   rC   r4   r&   r   )r,   rU   r   r/   r   r1   r1   r2   r     s    zerfc._eval_aseries)r5   )r5   )N)Nr   )r   r   r   r   r   r:   r>   r   rP   r   r   rX   r]   r_   r   r   r   rt   ru   rz   r~   rn   r   r   r   r3   r*   r   r1   r1   r1   r2   r     s0   L




r   c                       s   e Zd ZdZdZd*ddZedd Zee	dd	 Z
d
d Zdd Zdd Zd+ddZdd Zdd Zdd Zdd Zdd Zdd Zdd  Zd!d" Zd#d$ ZeZd,d&d'Z fd(d)Z  ZS )-r   a  
    Imaginary error function.

    Explanation
    ===========

    The function erfi is defined as:

    .. math ::
        \mathrm{erfi}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{t^2} \mathrm{d}t

    Examples
    ========

    >>> from sympy import I, oo, erfi
    >>> from sympy.abc import z

    Several special values are known:

    >>> erfi(0)
    0
    >>> erfi(oo)
    oo
    >>> erfi(-oo)
    -oo
    >>> erfi(I*oo)
    I
    >>> erfi(-I*oo)
    -I

    In general one can pull out factors of -1 and $I$ from the argument:

    >>> erfi(-z)
    -erfi(z)

    >>> from sympy import conjugate
    >>> conjugate(erfi(z))
    erfi(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(erfi(z), z)
    2*exp(z**2)/sqrt(pi)

    We can numerically evaluate the imaginary error function to arbitrary
    precision on the whole complex plane:

    >>> erfi(2).evalf(30)
    18.5648024145755525987042919132

    >>> erfi(-2*I).evalf(30)
    -0.995322265018952734162069256367*I

    See Also
    ========

    erf: Gaussian error function.
    erfc: Complementary error function.
    erf2: Two-argument error function.
    erfinv: Inverse error function.
    erfcinv: Inverse Complementary error function.
    erf2inv: Inverse two-argument error function.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Error_function
    .. [2] https://mathworld.wolfram.com/Erfi.html
    .. [3] https://functions.wolfram.com/GammaBetaErf/Erfi

    Tr5   c                 C   s4   |dkr&dt | jd d  tt S t| |d S r6   r7   r8   r1   r1   r2   r:     s    z
erfi.fdiffc                 C   s   |j r2|tjkrtjS |jr"tjS |tjkr2tjS |jr>tjS | rR| |  S |t}|d k	r|tjkrrtS t	|t
rt|jd  S t	|trttj|jd   S t	|tr|jd jrt|jd  S d S r?   )r@   r   rA   rF   r)   rB   rK   rJ   r   rG   r=   r&   rH   rC   rI   rM   rl   nzr1   r1   r2   rP   "  s*    





z	erfi.evalc                 G   s   | dk s| d dkrt jS t|}t| d t d }t|dkrb|d |d  | d  | |  S d||   | t| tt  S d S rQ   )r   r)   r   r   rS   r   r   r	   rT   r1   r1   r2   rX   @  s     zerfi.taylor_termc                 C   s   |  | jd  S rY   rZ   r\   r1   r1   r2   r]   M  s    zerfi._eval_conjugatec                 C   s   | j d jS rY   r^   r\   r1   r1   r2   _eval_is_extended_realP  s    zerfi._eval_is_extended_realc                 C   s   | j d jS rY   rc   r\   r1   r1   r2   rd   S  s    zerfi._eval_is_zeroNc                 K   s   |  tj dd|dS r   r   r   r1   r1   r2   r   V  s    zerfi._eval_rewrite_as_tractablec                 K   s   t  tt |  S ro   )r   r4   ry   r1   r1   r2   r   Y  s    zerfi._eval_rewrite_as_erfc                 K   s   t tt |  t  S ro   )r   r   ry   r1   r1   r2   r   \  s    zerfi._eval_rewrite_as_erfcc                 K   s4   t jt | tt }t jt t|tt|   S ro   rp   rs   r1   r1   r2   rt   _  s    zerfi._eval_rewrite_as_fresnelsc                 K   s4   t jt | tt }t jt t|tt|   S ro   rp   rs   r1   r1   r2   ru   c  s    zerfi._eval_rewrite_as_fresnelcc                 K   s0   |t t ttjgg dgtddg|d   S rv   rx   ry   r1   r1   r2   rz   g  s    zerfi._eval_rewrite_as_meijergc                 K   s,   d| t t ttjgdtj g|d  S r{   r}   ry   r1   r1   r2   r~   j  s    zerfi._eval_rewrite_as_hyperc                 K   s>   ddl m} t|d  | |tj|d  tt tj  S re   )ri   rg   r   r   rj   r	   rC   rk   r1   r1   r2   rn   m  s    z erfi._eval_rewrite_as_uppergammac                 K   s0   t |d  | |ttj|d   t t  S r   r   ry   r1   r1   r2   r   q  s    zerfi._eval_rewrite_as_expintc                 K   s
   |  tS ro   r   r   r1   r1   r2   r   t  s    zerfi._eval_expand_funcr   c                 C   s\   | j d j|||d}||d}||jkrB|jrBd| tt S |jrR| |S | |S )Nr   r   r%   )	r&   r   r   r   rF   r   r	   ra   r+   r   r1   r1   r2   r   y  s    
zerfi._eval_as_leading_termc                    s   ddl m} |d }|tjkrt| jd   fddt|D |d |  |g }t t d tt	 t
|   S tt| ||||S )Nr   r   c                    s4   g | ],}t d | d d |  d | d    qS r   )r   r   r   r1   r2   r     s   z&erfi._eval_aseries.<locals>.<listcomp>r5   r%   )r   r   r   rB   r&   r   r   r   r   r	   r   r   r   r   r,   rU   r   r/   r   r   r   r   r   r   r2   r     s    


"zerfi._eval_aseries)r5   )N)Nr   )r   r   r   r   r   r:   r   rP   r   r   rX   r]   r   rd   r   r   r   rt   ru   rz   r~   rn   r   r   r3   r*   r   r   r   r1   r1   r   r2   r     s0   I




r   c                   @   s   e Zd ZdZdd Zedd Zdd Zdd	 Zd
d Z	dd Z
dd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zd S )!erf2a?  
    Two-argument error function.

    Explanation
    ===========

    This function is defined as:

    .. math ::
        \mathrm{erf2}(x, y) = \frac{2}{\sqrt{\pi}} \int_x^y e^{-t^2} \mathrm{d}t

    Examples
    ========

    >>> from sympy import oo, erf2
    >>> from sympy.abc import x, y

    Several special values are known:

    >>> erf2(0, 0)
    0
    >>> erf2(x, x)
    0
    >>> erf2(x, oo)
    1 - erf(x)
    >>> erf2(x, -oo)
    -erf(x) - 1
    >>> erf2(oo, y)
    erf(y) - 1
    >>> erf2(-oo, y)
    erf(y) + 1

    In general one can pull out factors of -1:

    >>> erf2(-x, -y)
    -erf2(x, y)

    The error function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(erf2(x, y))
    erf2(conjugate(x), conjugate(y))

    Differentiation with respect to $x$, $y$ is supported:

    >>> from sympy import diff
    >>> diff(erf2(x, y), x)
    -2*exp(-x**2)/sqrt(pi)
    >>> diff(erf2(x, y), y)
    2*exp(-y**2)/sqrt(pi)

    See Also
    ========

    erf: Gaussian error function.
    erfc: Complementary error function.
    erfi: Imaginary error function.
    erfinv: Inverse error function.
    erfcinv: Inverse Complementary error function.
    erf2inv: Inverse two-argument error function.

    References
    ==========

    .. [1] https://functions.wolfram.com/GammaBetaErf/Erf2/

    c                 C   s\   | j \}}|dkr,dt|d   tt S |dkrNdt|d   tt S t| |d S )Nr5   rR   r%   )r&   r   r   r	   r   r,   r9   r/   r0   r1   r1   r2   r:     s    
z
erf2.fdiffc                 C   s   t jt jt jf}|t jks$|t jkr*t jS ||kr8t jS ||ksH||krXt|t| S t|trz|jd |krz|jd S |j	s|j	s|j
r|js|j
r|jrt|t| S | }| }|r|r| | |  S |s|rt|t| S d S r?   )r   rB   rD   r)   rA   r4   rG   rI   r&   rF   r'   is_infiniterK   )rM   r/   r0   ZchkZsign_xZsign_yr1   r1   r2   rP     s*    
z	erf2.evalc                 C   s    |  | jd  | jd  S r?   rZ   r\   r1   r1   r2   r]     s    zerf2._eval_conjugatec                 C   s   | j d jo| j d jS r?   r^   r\   r1   r1   r2   r     s    zerf2._eval_is_extended_realc                 K   s   t |t | S ro   r4   r,   r/   r0   rm   r1   r1   r2   r     s    zerf2._eval_rewrite_as_erfc                 K   s   t |t | S ro   r   r   r1   r1   r2   r     s    zerf2._eval_rewrite_as_erfcc                 K   s   t tt | tt |   S ro   r   r   r1   r1   r2   r     s    zerf2._eval_rewrite_as_erfic                 K   s   t |tt |t S ro   )r4   r   rr   r   r1   r1   r2   rt     s    zerf2._eval_rewrite_as_fresnelsc                 K   s   t |tt |t S ro   )r4   r   rq   r   r1   r1   r2   ru   
  s    zerf2._eval_rewrite_as_fresnelcc                 K   s   t |tt |t S ro   )r4   r   r#   r   r1   r1   r2   rz     s    zerf2._eval_rewrite_as_meijergc                 K   s   t |tt |t S ro   )r4   r   r"   r   r1   r1   r2   r~     s    zerf2._eval_rewrite_as_hyperc                 K   sh   ddl m} t|d | tj|tj|d tt   t|d | tj|tj|d tt    S re   rh   )r,   r/   r0   rm   rg   r1   r1   r2   rn     s    ,,z erf2._eval_rewrite_as_uppergammac                 K   s   t |tt |t S ro   )r4   r   r   r   r1   r1   r2   r     s    zerf2._eval_rewrite_as_expintc                 K   s
   |  tS ro   r   r   r1   r1   r2   r     s    zerf2._eval_expand_funcc                 C   s
   t | j S ro   )r   r&   r\   r1   r1   r2   rd     s    zerf2._eval_is_zeroN)r   r   r   r   r:   r   rP   r]   r   r   r   r   rt   ru   rz   r~   rn   r   r   rd   r1   r1   r1   r2   r     s"   E	
r   c                   @   s@   e Zd ZdZdddZdddZedd Zd	d
 Zdd Z	dS )r=   aR  
    Inverse Error Function. The erfinv function is defined as:

    .. math ::
        \mathrm{erf}(x) = y \quad \Rightarrow \quad \mathrm{erfinv}(y) = x

    Examples
    ========

    >>> from sympy import erfinv
    >>> from sympy.abc import x

    Several special values are known:

    >>> erfinv(0)
    0
    >>> erfinv(1)
    oo

    Differentiation with respect to $x$ is supported:

    >>> from sympy import diff
    >>> diff(erfinv(x), x)
    sqrt(pi)*exp(erfinv(x)**2)/2

    We can numerically evaluate the inverse error function to arbitrary
    precision on [-1, 1]:

    >>> erfinv(0.2).evalf(30)
    0.179143454621291692285822705344

    See Also
    ========

    erf: Gaussian error function.
    erfc: Complementary error function.
    erfi: Imaginary error function.
    erf2: Two-argument error function.
    erfcinv: Inverse Complementary error function.
    erf2inv: Inverse two-argument error function.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions
    .. [2] https://functions.wolfram.com/GammaBetaErf/InverseErf/

    r5   c                 C   s<   |dkr.t tt| | jd d  tj S t| |d S Nr5   r   r%   r   r	   r   r+   r&   r   rj   r   r8   r1   r1   r2   r:   T  s    &zerfinv.fdiffc                 C   s   t S r;   r   r8   r1   r1   r2   r>   Z  s    zerfinv.inversec                 C   s   |t jkrt jS |t jkr t jS |jr,t jS |t jkr<t jS t|t	r\|j
d jr\|j
d S |jrht jS |d}|d k	rt|t	r|j
d jr|j
d  S d S Nr   rw   )r   rA   rE   rD   rF   r)   rC   rB   rG   r4   r&   r'   rJ   r   r1   r1   r2   rP   a  s    




zerfinv.evalc                 K   s   t d| S Nr5   r   ry   r1   r1   r2   _eval_rewrite_as_erfcinvw  s    zerfinv._eval_rewrite_as_erfcinvc                 C   s   | j d jS rY   rc   r\   r1   r1   r2   rd   z  s    zerfinv._eval_is_zeroN)r5   )r5   )
r   r   r   r   r:   r>   r   rP   r   rd   r1   r1   r1   r2   r=   !  s   2


r=   c                   @   sH   e Zd ZdZdddZdddZedd Zd	d
 Zdd Z	dd Z
dS )rH   a  
    Inverse Complementary Error Function. The erfcinv function is defined as:

    .. math ::
        \mathrm{erfc}(x) = y \quad \Rightarrow \quad \mathrm{erfcinv}(y) = x

    Examples
    ========

    >>> from sympy import erfcinv
    >>> from sympy.abc import x

    Several special values are known:

    >>> erfcinv(1)
    0
    >>> erfcinv(0)
    oo

    Differentiation with respect to $x$ is supported:

    >>> from sympy import diff
    >>> diff(erfcinv(x), x)
    -sqrt(pi)*exp(erfcinv(x)**2)/2

    See Also
    ========

    erf: Gaussian error function.
    erfc: Complementary error function.
    erfi: Imaginary error function.
    erf2: Two-argument error function.
    erfinv: Inverse error function.
    erf2inv: Inverse two-argument error function.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions
    .. [2] https://functions.wolfram.com/GammaBetaErf/InverseErfc/

    r5   c                 C   s>   |dkr0t t t| | jd d  tj S t| |d S r   r   r8   r1   r1   r2   r:     s    (zerfcinv.fdiffc                 C   s   t S r;   r   r8   r1   r1   r2   r>     s    zerfcinv.inversec                 C   sJ   |t jkrt jS |jrt jS |t jkr,t jS |dkr:t jS |jrFt jS d S r   )r   rA   rF   rB   rC   r)   rD   rM   rl   r1   r1   r2   rP     s    

zerfcinv.evalc                 K   s   t d| S r   r<   ry   r1   r1   r2   _eval_rewrite_as_erfinv  s    zerfcinv._eval_rewrite_as_erfinvc                 C   s   | j d d jS r?   rc   r\   r1   r1   r2   rd     s    zerfcinv._eval_is_zeroc                 C   s   | j d jS rY   rc   r\   r1   r1   r2   _eval_is_infinite  s    zerfcinv._eval_is_infiniteN)r5   )r5   )r   r   r   r   r:   r>   r   rP   r   rd   r   r1   r1   r1   r2   rH   ~  s   ,


rH   c                   @   s,   e Zd ZdZdd Zedd Zdd ZdS )	rI   a2  
    Two-argument Inverse error function. The erf2inv function is defined as:

    .. math ::
        \mathrm{erf2}(x, w) = y \quad \Rightarrow \quad \mathrm{erf2inv}(x, y) = w

    Examples
    ========

    >>> from sympy import erf2inv, oo
    >>> from sympy.abc import x, y

    Several special values are known:

    >>> erf2inv(0, 0)
    0
    >>> erf2inv(1, 0)
    1
    >>> erf2inv(0, 1)
    oo
    >>> erf2inv(0, y)
    erfinv(y)
    >>> erf2inv(oo, y)
    erfcinv(-y)

    Differentiation with respect to $x$ and $y$ is supported:

    >>> from sympy import diff
    >>> diff(erf2inv(x, y), x)
    exp(-x**2 + erf2inv(x, y)**2)
    >>> diff(erf2inv(x, y), y)
    sqrt(pi)*exp(erf2inv(x, y)**2)/2

    See Also
    ========

    erf: Gaussian error function.
    erfc: Complementary error function.
    erfi: Imaginary error function.
    erf2: Two-argument error function.
    erfinv: Inverse error function.
    erfcinv: Inverse complementary error function.

    References
    ==========

    .. [1] https://functions.wolfram.com/GammaBetaErf/InverseErf2/

    c                 C   sf   | j \}}|dkr.t| ||d |d  S |dkrXtttj t| ||d  S t| |d S )Nr5   r%   )r&   r   r+   r   r	   r   rj   r   r   r1   r1   r2   r:     s    
"zerf2inv.fdiffc                 C   s   |t jks|t jkrt jS |jr,|jr,t jS |jrB|t jkrBt jS |t jkrX|jrXt jS |jrft|S |t jkrzt| S |jr|S |t jkrt|S |jr|jrt jS t|S |jr|S d S ro   )r   rA   rF   r)   rC   rB   r=   rH   )rM   r/   r0   r1   r1   r2   rP     s,    


zerf2inv.evalc                 C   s   | j \}}|jr|jrdS d S )NTrc   )r,   r/   r0   r1   r1   r2   rd   (  s    
zerf2inv._eval_is_zeroN)r   r   r   r   r:   r   rP   rd   r1   r1   r1   r2   rI     s
   3	
rI   c                       s   e Zd ZdZedd ZdddZdd Zd	d
 Zdd Z	dd Z
dd ZeZeZeZdddZd fdd	Zd fdd	Z fddZ  ZS )Eia	  
    The classical exponential integral.

    Explanation
    ===========

    For use in SymPy, this function is defined as

    .. math:: \operatorname{Ei}(x) = \sum_{n=1}^\infty \frac{x^n}{n\, n!}
                                     + \log(x) + \gamma,

    where $\gamma$ is the Euler-Mascheroni constant.

    If $x$ is a polar number, this defines an analytic function on the
    Riemann surface of the logarithm. Otherwise this defines an analytic
    function in the cut plane $\mathbb{C} \setminus (-\infty, 0]$.

    **Background**

    The name exponential integral comes from the following statement:

    .. math:: \operatorname{Ei}(x) = \int_{-\infty}^x \frac{e^t}{t} \mathrm{d}t

    If the integral is interpreted as a Cauchy principal value, this statement
    holds for $x > 0$ and $\operatorname{Ei}(x)$ as defined above.

    Examples
    ========

    >>> from sympy import Ei, polar_lift, exp_polar, I, pi
    >>> from sympy.abc import x

    >>> Ei(-1)
    Ei(-1)

    This yields a real value:

    >>> Ei(-1).n(chop=True)
    -0.219383934395520

    On the other hand the analytic continuation is not real:

    >>> Ei(polar_lift(-1)).n(chop=True)
    -0.21938393439552 + 3.14159265358979*I

    The exponential integral has a logarithmic branch point at the origin:

    >>> Ei(x*exp_polar(2*I*pi))
    Ei(x) + 2*I*pi

    Differentiation is supported:

    >>> Ei(x).diff(x)
    exp(x)/x

    The exponential integral is related to many other special functions.
    For example:

    >>> from sympy import expint, Shi
    >>> Ei(x).rewrite(expint)
    -expint(1, x*exp_polar(I*pi)) - I*pi
    >>> Ei(x).rewrite(Shi)
    Chi(x) + Shi(x)

    See Also
    ========

    expint: Generalised exponential integral.
    E1: Special case of the generalised exponential integral.
    li: Logarithmic integral.
    Li: Offset logarithmic integral.
    Si: Sine integral.
    Ci: Cosine integral.
    Shi: Hyperbolic sine integral.
    Chi: Hyperbolic cosine integral.
    uppergamma: Upper incomplete gamma function.

    References
    ==========

    .. [1] https://dlmf.nist.gov/6.6
    .. [2] https://en.wikipedia.org/wiki/Exponential_integral
    .. [3] Abramowitz & Stegun, section 5: https://web.archive.org/web/20201128173312/http://people.math.sfu.ca/~cbm/aands/page_228.htm

    c                 C   sd   |j rtjS |tjkrtjS |tjkr,tjS |j r8tjS | \}}|r`t|dt t |  S d S r   )	rF   r   rD   rB   r)   extract_branch_factorr   r   r	   rM   rl   r   rU   r1   r1   r2   rP     s    

zEi.evalr5   c                 C   s0   t | jd }|dkr"t|| S t| |d S r?   )r   r&   r   r   r,   r9   rN   r1   r1   r2   r:     s    zEi.fdiffc                 C   s:   | j d td jr.t| |tt | S t| |S r   )r&   r   r   r   _eval_evalfr   r	   r,   precr1   r1   r2   r     s    zEi._eval_evalfc                 K   s(   ddl m} |dtd|  tt  S )Nr   rf   rw   )ri   rg   r   r   r	   rk   r1   r1   r2   rn     s    zEi._eval_rewrite_as_uppergammac                 K   s   t dtd|  tt  S )Nr5   rw   )r   r   r   r	   ry   r1   r1   r2   r     s    zEi._eval_rewrite_as_expintc                 K   s$   t |trt|jd S tt|S rY   )rG   r   lir&   r   ry   r1   r1   r2   _eval_rewrite_as_li  s    
zEi._eval_rewrite_as_lic                 K   s2   |j rt|t| tt  S t|t| S d S ro   )is_negativeShiChir   r	   ry   r1   r1   r2   _eval_rewrite_as_Si  s    zEi._eval_rewrite_as_SiNc                 K   s   t |t| S ro   )r   _eisr   r1   r1   r2   r     s    zEi._eval_rewrite_as_tractabler   c           	         s   ddl m} | jd |d}| jd j||d}|||}|jr||\}}|d krbt|n|}t|||  t	 ||j
rtt ntj S t j|||dS )Nr   )r   )r   r   )Zsympyr   r&   r   r   r   rF   as_coeff_exponentr   r   r   r   r	   r   r)   r   r   )	r,   r/   r   r   r   x0rN   cer   r1   r2   r     s    zEi._eval_as_leading_termc                    sB   | j d |d}|jr2| j| j  }||||S t |||S rY   )r&   r   rF   r   _eval_nseriesr   r,   r/   rU   r   r   r   fr   r1   r2   r     s
    zEi._eval_nseriesc                    s|   ddl m} |d }|tjkrf| jd   fddt|D |d |  |g }t   t|  S tt	| 
||||S )Nr   r   c                    s   g | ]}t | |  qS r1   r   r   r   r1   r2   r     s     z$Ei._eval_aseries.<locals>.<listcomp>r5   )r   r   r   rB   r&   r   r   r   r   r   r   r   r   r   r2   r     s    

zEi._eval_aseries)r5   )N)Nr   )r   )r   r   r   r   r   rP   r:   r   rn   r   r   r   _eval_rewrite_as_Ci_eval_rewrite_as_Chi_eval_rewrite_as_Shir   r   r   r   r   r1   r1   r   r2   r   1  s    W

	
r   c                       sn   e Zd ZdZedd Zdd Zdd Zdd	 Zd
d Z	dd Z
e
Ze
Ze
Zd fdd	Z fddZ  ZS )r   a  
    Generalized exponential integral.

    Explanation
    ===========

    This function is defined as

    .. math:: \operatorname{E}_\nu(z) = z^{\nu - 1} \Gamma(1 - \nu, z),

    where $\Gamma(1 - \nu, z)$ is the upper incomplete gamma function
    (``uppergamma``).

    Hence for $z$ with positive real part we have

    .. math:: \operatorname{E}_\nu(z)
              =   \int_1^\infty \frac{e^{-zt}}{t^\nu} \mathrm{d}t,

    which explains the name.

    The representation as an incomplete gamma function provides an analytic
    continuation for $\operatorname{E}_\nu(z)$. If $\nu$ is a
    non-positive integer, the exponential integral is thus an unbranched
    function of $z$, otherwise there is a branch point at the origin.
    Refer to the incomplete gamma function documentation for details of the
    branching behavior.

    Examples
    ========

    >>> from sympy import expint, S
    >>> from sympy.abc import nu, z

    Differentiation is supported. Differentiation with respect to $z$ further
    explains the name: for integral orders, the exponential integral is an
    iterated integral of the exponential function.

    >>> expint(nu, z).diff(z)
    -expint(nu - 1, z)

    Differentiation with respect to $\nu$ has no classical expression:

    >>> expint(nu, z).diff(nu)
    -z**(nu - 1)*meijerg(((), (1, 1)), ((0, 0, 1 - nu), ()), z)

    At non-postive integer orders, the exponential integral reduces to the
    exponential function:

    >>> expint(0, z)
    exp(-z)/z
    >>> expint(-1, z)
    exp(-z)/z + exp(-z)/z**2

    At half-integers it reduces to error functions:

    >>> expint(S(1)/2, z)
    sqrt(pi)*erfc(sqrt(z))/sqrt(z)

    At positive integer orders it can be rewritten in terms of exponentials
    and ``expint(1, z)``. Use ``expand_func()`` to do this:

    >>> from sympy import expand_func
    >>> expand_func(expint(5, z))
    z**4*expint(1, z)/24 + (-z**3 + z**2 - 2*z + 6)*exp(-z)/24

    The generalised exponential integral is essentially equivalent to the
    incomplete gamma function:

    >>> from sympy import uppergamma
    >>> expint(nu, z).rewrite(uppergamma)
    z**(nu - 1)*uppergamma(1 - nu, z)

    As such it is branched at the origin:

    >>> from sympy import exp_polar, pi, I
    >>> expint(4, z*exp_polar(2*pi*I))
    I*pi*z**3/3 + expint(4, z)
    >>> expint(nu, z*exp_polar(2*pi*I))
    z**(nu - 1)*(exp(2*I*pi*nu) - 1)*gamma(1 - nu) + expint(nu, z)

    See Also
    ========

    Ei: Another related function called exponential integral.
    E1: The classical case, returns expint(1, z).
    li: Logarithmic integral.
    Li: Offset logarithmic integral.
    Si: Sine integral.
    Ci: Cosine integral.
    Shi: Hyperbolic sine integral.
    Chi: Hyperbolic cosine integral.
    uppergamma

    References
    ==========

    .. [1] https://dlmf.nist.gov/8.19
    .. [2] https://functions.wolfram.com/GammaBetaErf/ExpIntegralE/
    .. [3] https://en.wikipedia.org/wiki/Exponential_integral

    c                 C   s  ddl m}m} t|}||kr*t||S |jr8|dksH|jsjd| jrjtt||d  |d| | S | \}}|tj	krd S |j
r|dksd S t||dt t | tj|d   t|d  t||d    S tdt t | | d ||d   |d|  t|| S d S )Nr   )gammarg   r%   r5   )ri   r   rg   r   r   
is_Integerr   r   r   r)   
is_integerr	   r   rE   r   r   )rM   nurl   r   rg   Znu2rU   r1   r1   r2   rP   K  s     
"
8zexpint.evalc                 C   sd   | j \}}|dkr>||d   tg ddgddd| gg | S |dkrVt|d | S t| |d S r   )r&   r#   r   r   )r,   r9   r   rl   r1   r1   r2   r:   a  s    
,zexpint.fdiffc                 K   s&   ddl m} ||d  |d| | S )Nr   rf   r5   )ri   rg   )r,   r   rl   rm   rg   r1   r1   r2   rn   j  s    z"expint._eval_rewrite_as_uppergammac                    s    dkr(t |tt t   tt  S  jr dkrt|  d  t d  t|t  t	t d  t
 fddt d D    S | S d S )Nr5   c                    s$   g | ]}t  | d  |  qS r%   r   r   r   r/   r1   r2   r   v  s     z.expint._eval_rewrite_as_Ei.<locals>.<listcomp>)r   r   r   r	   r   r   r   E1r   r   r   r   r,   r   rl   rm   r1   r   r2   _eval_rewrite_as_Ein  s     
$zexpint._eval_rewrite_as_Eic                 K   s   |  tj tf|S ro   )r   r   r   r   r1   r1   r2   r   z  s    zexpint._eval_expand_funcc                 K   s   |dkr| S t |t| S r   )r   r   r   r1   r1   r2   r   }  s    zexpint._eval_rewrite_as_Sir   c                    st   | j d |sd| j d }|dkr<| j| j  }||||S |jrd|dkrd| j| j  }||||S t |||S r?   )r&   hasr   r   r   r   r   )r,   r/   rU   r   r   r   r   r   r1   r2   r     s    
zexpint._eval_nseriesc                    s   ddl m} |d }| jd  |tjkrt| jd  fddt|D |d|  |g }t  t|  S tt	| 
||||S )Nr   r   r5   c                    s(   g | ] }t j| t | |  qS r1   )r   rE   r   r   r   rl   r1   r2   r     s     z(expint._eval_aseries.<locals>.<listcomp>)r   r   r&   r   rB   r   r   r   r   r   r   r   r   r   r2   r     s    


,zexpint._eval_aseries)r   )r   r   r   r   r   rP   r:   rn   r   r   r   r   r   r   r   r   r   r1   r1   r   r2   r     s   g
	r   c                 C   s
   t d| S )a+  
    Classical case of the generalized exponential integral.

    Explanation
    ===========

    This is equivalent to ``expint(1, z)``.

    Examples
    ========

    >>> from sympy import E1
    >>> E1(0)
    expint(1, 0)

    >>> E1(5)
    expint(1, 5)

    See Also
    ========

    Ei: Exponential integral.
    expint: Generalised exponential integral.
    li: Logarithmic integral.
    Li: Offset logarithmic integral.
    Si: Sine integral.
    Ci: Cosine integral.
    Shi: Hyperbolic sine integral.
    Chi: Hyperbolic cosine integral.

    r5   )r   r   r1   r1   r2   r     s     r   c                   @   s   e Zd ZdZedd ZdddZdd Zd	d
 Zdd Z	dd Z
dd ZeZdd ZeZdd Zdd Zd ddZd!ddZdd ZdS )"r   a	  
    The classical logarithmic integral.

    Explanation
    ===========

    For use in SymPy, this function is defined as

    .. math:: \operatorname{li}(x) = \int_0^x \frac{1}{\log(t)} \mathrm{d}t \,.

    Examples
    ========

    >>> from sympy import I, oo, li
    >>> from sympy.abc import z

    Several special values are known:

    >>> li(0)
    0
    >>> li(1)
    -oo
    >>> li(oo)
    oo

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(li(z), z)
    1/log(z)

    Defining the ``li`` function via an integral:
    >>> from sympy import integrate
    >>> integrate(li(z))
    z*li(z) - Ei(2*log(z))

    >>> integrate(li(z),z)
    z*li(z) - Ei(2*log(z))


    The logarithmic integral can also be defined in terms of ``Ei``:

    >>> from sympy import Ei
    >>> li(z).rewrite(Ei)
    Ei(log(z))
    >>> diff(li(z).rewrite(Ei), z)
    1/log(z)

    We can numerically evaluate the logarithmic integral to arbitrary precision
    on the whole complex plane (except the singular points):

    >>> li(2).evalf(30)
    1.04516378011749278484458888919

    >>> li(2*I).evalf(30)
    1.0652795784357498247001125598 + 3.08346052231061726610939702133*I

    We can even compute Soldner's constant by the help of mpmath:

    >>> from mpmath import findroot
    >>> findroot(li, 2)
    1.45136923488338

    Further transformations include rewriting ``li`` in terms of
    the trigonometric integrals ``Si``, ``Ci``, ``Shi`` and ``Chi``:

    >>> from sympy import Si, Ci, Shi, Chi
    >>> li(z).rewrite(Si)
    -log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z))
    >>> li(z).rewrite(Ci)
    -log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z))
    >>> li(z).rewrite(Shi)
    -log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))
    >>> li(z).rewrite(Chi)
    -log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))

    See Also
    ========

    Li: Offset logarithmic integral.
    Ei: Exponential integral.
    expint: Generalised exponential integral.
    E1: Special case of the generalised exponential integral.
    Si: Sine integral.
    Ci: Cosine integral.
    Shi: Hyperbolic sine integral.
    Chi: Hyperbolic cosine integral.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Logarithmic_integral
    .. [2] https://mathworld.wolfram.com/LogarithmicIntegral.html
    .. [3] https://dlmf.nist.gov/6
    .. [4] https://mathworld.wolfram.com/SoldnersConstant.html

    c                 C   s<   |j rtjS |tjkrtjS |tjkr,tjS |j r8tjS d S ro   )rF   r   r)   rC   rD   rB   r   r1   r1   r2   rP   $  s    

zli.evalr5   c                 C   s.   | j d }|dkr tjt| S t| |d S r?   r&   r   rC   r   r   r   r1   r1   r2   r:   /  s    
zli.fdiffc                 C   s"   | j d }|js| | S d S rY   )r&   Zis_extended_negativer+   r[   r,   rl   r1   r1   r2   r]   6  s    
zli._eval_conjugatec                 K   s   t |td S r   )Lir   ry   r1   r1   r2   _eval_rewrite_as_Li<  s    zli._eval_rewrite_as_Lic                 K   s   t t|S ro   )r   r   ry   r1   r1   r2   r   ?  s    zli._eval_rewrite_as_Eic                 K   sP   ddl m} |dt|  tjtt|ttjt|    tt|  S Nr   rf   )ri   rg   r   r   rj   rC   rk   r1   r1   r2   rn   B  s    "zli._eval_rewrite_as_uppergammac                 K   sX   t tt| tttt|   tjttjt| tt|   ttt|  S ro   )Cir   r   Sir   rj   rC   ry   r1   r1   r2   r   G  s
    ""zli._eval_rewrite_as_Sic                 K   s<   t t|tt| tjttjt| tt|   S ro   )r   r   r   r   rj   rC   ry   r1   r1   r2   r   M  s    zli._eval_rewrite_as_Shic                 K   s@   t |tddt | tjt t |t tjt |    t S )N)r5   r5   )r%   r%   )r   r"   r   rj   rC   r   ry   r1   r1   r2   r~   R  s
    "zli._eval_rewrite_as_hyperc                 K   sF   t t |  tjt tjt | t t |   tddt |  S )N)r1   r5   ))r   r   r1   )r   r   rj   rC   r#   ry   r1   r1   r2   rz   V  s    2zli._eval_rewrite_as_meijergNc                 K   s   |t t| S ro   )r   r   r   r1   r1   r2   r   Z  s    zli._eval_rewrite_as_tractabler   c                    s:   | j d   fddtd|D }ttt  t|  S )Nr   c                    s$   g | ]}t  | t||  qS r1   )r   r   r   r   r1   r2   r   _  s     z$li._eval_nseries.<locals>.<listcomp>r5   )r&   r   r   r   r   )r,   r/   rU   r   r   r   r1   r   r2   r   ]  s    
zli._eval_nseriesc                 C   s   | j d }|jrdS d S r`   rc   r   r1   r1   r2   rd   b  s    
zli._eval_is_zero)r5   )N)r   )r   r   r   r   r   rP   r:   r]   r   r   rn   r   r   r   r   r~   rz   r   r   rd   r1   r1   r1   r2   r     s"   c




r   c                   @   sJ   e Zd ZdZedd ZdddZdd Zd	d
 ZdddZ	dddZ
dS )r   ab  
    The offset logarithmic integral.

    Explanation
    ===========

    For use in SymPy, this function is defined as

    .. math:: \operatorname{Li}(x) = \operatorname{li}(x) - \operatorname{li}(2)

    Examples
    ========

    >>> from sympy import Li
    >>> from sympy.abc import z

    The following special value is known:

    >>> Li(2)
    0

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(Li(z), z)
    1/log(z)

    The shifted logarithmic integral can be written in terms of $li(z)$:

    >>> from sympy import li
    >>> Li(z).rewrite(li)
    li(z) - li(2)

    We can numerically evaluate the logarithmic integral to arbitrary precision
    on the whole complex plane (except the singular points):

    >>> Li(2).evalf(30)
    0

    >>> Li(4).evalf(30)
    1.92242131492155809316615998938

    See Also
    ========

    li: Logarithmic integral.
    Ei: Exponential integral.
    expint: Generalised exponential integral.
    E1: Special case of the generalised exponential integral.
    Si: Sine integral.
    Ci: Cosine integral.
    Shi: Hyperbolic sine integral.
    Chi: Hyperbolic cosine integral.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Logarithmic_integral
    .. [2] https://mathworld.wolfram.com/LogarithmicIntegral.html
    .. [3] https://dlmf.nist.gov/6

    c                 C   s&   |t jkrt jS |t dkr"t jS d S r   )r   rB   r)   r   r1   r1   r2   rP     s    
zLi.evalr5   c                 C   s.   | j d }|dkr tjt| S t| |d S r?   r   r   r1   r1   r2   r:     s    
zLi.fdiffc                 C   s   |  t|S ro   )r   r   Zevalfr   r1   r1   r2   r     s    zLi._eval_evalfc                 K   s   t |t d S r   )r   ry   r1   r1   r2   r     s    zLi._eval_rewrite_as_liNc                 K   s   |  tj dddS )Nr   T)r-   )r   r   r   r1   r1   r2   r     s    zLi._eval_rewrite_as_tractabler   c                 C   s   | j | j }||||S ro   )r   r&   r   )r,   r/   rU   r   r   r   r1   r1   r2   r     s    zLi._eval_nseries)r5   )N)r   )r   r   r   r   r   rP   r:   r   r   r   r   r1   r1   r1   r2   r   g  s   @


r   c                       sH   e Zd ZdZedd ZdddZdd Zd	d
 Zd fdd	Z	  Z
S )TrigonometricIntegralz) Base class for trigonometric integrals. c                 C   s,  |t jkr| jS |t jkr"|  S |t jkr4|  S |jr@| jS |t	t
}|d krn| ddkrn|t
}|d k	r| |dS |t	t
 }|d k	r| |dS |t	d}|d kr| ddkr|d}|d k	r| |S | \}}|dkr
||kr
d S dt t
 | | d | | S )Nr   r5   rw   r%   )r   r)   _atzerorB   _atinfrD   	_atneginfrF   rJ   r   r   	_trigfunc_Ifactor_minusfactorr   r	   r   r1   r1   r2   rP     s2    





zTrigonometricIntegral.evalr5   c                 C   s2   t | jd }|dkr$| || S t| |d S r?   )r   r&   r  r   r   r1   r1   r2   r:     s    zTrigonometricIntegral.fdiffc                 K   s   |  |tS ro   )r   r   r   ry   r1   r1   r2   r     s    z)TrigonometricIntegral._eval_rewrite_as_Eic                 K   s   ddl m} | ||S r   )ri   rg   r   r   rk   r1   r1   r2   rn     s    z1TrigonometricIntegral._eval_rewrite_as_uppergammar   c                    s   |d7 }| j d |ddkr.t |||S | ||||}| ddkrX|d8 }|jtdd dd}| ddkr|tt| 7 }||| j d |||S )Nr5   r   c                 S   s   | | | S ro   r1   )rO   rU   r1   r1   r2   <lambda>      z5TrigonometricIntegral._eval_nseries.<locals>.<lambda>F)Zsimultaneous)	r&   r   r   r   r  replacer   r   r   )r,   r/   rU   r   r   Z
baseseriesr   r1   r2   r     s    z#TrigonometricIntegral._eval_nseries)r5   )r   )r   r   r   r   r   rP   r:   r   rn   r   r   r1   r1   r   r2   r     s   

r   c                       sr   e Zd ZdZeZejZe	dd Z
e	dd Ze	dd Ze	dd	 Zd
d Zdd Z fddZdd Z  ZS )r   a  
    Sine integral.

    Explanation
    ===========

    This function is defined by

    .. math:: \operatorname{Si}(z) = \int_0^z \frac{\sin{t}}{t} \mathrm{d}t.

    It is an entire function.

    Examples
    ========

    >>> from sympy import Si
    >>> from sympy.abc import z

    The sine integral is an antiderivative of $sin(z)/z$:

    >>> Si(z).diff(z)
    sin(z)/z

    It is unbranched:

    >>> from sympy import exp_polar, I, pi
    >>> Si(z*exp_polar(2*I*pi))
    Si(z)

    Sine integral behaves much like ordinary sine under multiplication by ``I``:

    >>> Si(I*z)
    I*Shi(z)
    >>> Si(-z)
    -Si(z)

    It can also be expressed in terms of exponential integrals, but beware
    that the latter is branched:

    >>> from sympy import expint
    >>> Si(z).rewrite(expint)
    -I*(-expint(1, z*exp_polar(-I*pi/2))/2 +
         expint(1, z*exp_polar(I*pi/2))/2) + pi/2

    It can be rewritten in the form of sinc function (by definition):

    >>> from sympy import sinc
    >>> Si(z).rewrite(sinc)
    Integral(sinc(t), (t, 0, z))

    See Also
    ========

    Ci: Cosine integral.
    Shi: Hyperbolic sine integral.
    Chi: Hyperbolic cosine integral.
    Ei: Exponential integral.
    expint: Generalised exponential integral.
    sinc: unnormalized sinc function
    E1: Special case of the generalised exponential integral.
    li: Logarithmic integral.
    Li: Offset logarithmic integral.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral

    c                 C   s
   t tj S ro   r	   r   rj   rM   r1   r1   r2   r   Q  s    z	Si._atinfc                 C   s   t  tj S ro   r  r	  r1   r1   r2   r  U  s    zSi._atneginfc                 C   s
   t | S ro   )r   r   r1   r1   r2   r  Y  s    zSi._minusfactorc                 C   s   t t| | S ro   )r   r   rM   rl   signr1   r1   r2   r  ]  s    zSi._Ifactorc                 K   s2   t d ttt| ttt |  d t  S r   )r	   r   r   r   ry   r1   r1   r2   r   a  s    zSi._eval_rewrite_as_expintc                 K   s,   ddl m} tddd}|t||d|fS )Nr   )IntegralrO   T)ZDummy)Zsympy.integrals.integralsr  r   r!   )r,   rl   rm   r  rO   r1   r1   r2   _eval_rewrite_as_since  s    zSi._eval_rewrite_as_sincc           	         s   ddl m} |d }|tjkr| jd   fddtt|d d D |d |  |g } fddtt|d d D |d |  |g }td t   t	|   t
   t	|   S tt| ||||S )Nr   r   c                    s.   g | ]&}t j| td |   d |   qS r   r   rE   r   r   r   r1   r2   r   q  s   z$Si._eval_aseries.<locals>.<listcomp>r5   r%   c                    s6   g | ].}t j| td | d   d | d   qS r   r  r   r   r1   r2   r   s  s   )r   r   r   rB   r&   r   intr	   r   r   r    r   r   r   	r,   rU   r   r/   r   r   r   pqr   r   r2   r   j  s     



0zSi._eval_aseriesc                 C   s   | j d }|jrdS d S r`   rc   r   r1   r1   r2   rd   z  s    
zSi._eval_is_zero)r   r   r   r   r    r  r   r)   r   r   r   r  r  r  r   r  r   rd   r   r1   r1   r   r2   r     s   F



r   c                       sl   e Zd ZdZeZejZe	dd Z
e	dd Ze	dd Ze	dd	 Zd
d ZdddZ fddZ  ZS )r   a  
    Cosine integral.

    Explanation
    ===========

    This function is defined for positive $x$ by

    .. math:: \operatorname{Ci}(x) = \gamma + \log{x}
                         + \int_0^x \frac{\cos{t} - 1}{t} \mathrm{d}t
           = -\int_x^\infty \frac{\cos{t}}{t} \mathrm{d}t,

    where $\gamma$ is the Euler-Mascheroni constant.

    We have

    .. math:: \operatorname{Ci}(z) =
        -\frac{\operatorname{E}_1\left(e^{i\pi/2} z\right)
               + \operatorname{E}_1\left(e^{-i \pi/2} z\right)}{2}

    which holds for all polar $z$ and thus provides an analytic
    continuation to the Riemann surface of the logarithm.

    The formula also holds as stated
    for $z \in \mathbb{C}$ with $\Re(z) > 0$.
    By lifting to the principal branch, we obtain an analytic function on the
    cut complex plane.

    Examples
    ========

    >>> from sympy import Ci
    >>> from sympy.abc import z

    The cosine integral is a primitive of $\cos(z)/z$:

    >>> Ci(z).diff(z)
    cos(z)/z

    It has a logarithmic branch point at the origin:

    >>> from sympy import exp_polar, I, pi
    >>> Ci(z*exp_polar(2*I*pi))
    Ci(z) + 2*I*pi

    The cosine integral behaves somewhat like ordinary $\cos$ under
    multiplication by $i$:

    >>> from sympy import polar_lift
    >>> Ci(polar_lift(I)*z)
    Chi(z) + I*pi/2
    >>> Ci(polar_lift(-1)*z)
    Ci(z) + I*pi

    It can also be expressed in terms of exponential integrals:

    >>> from sympy import expint
    >>> Ci(z).rewrite(expint)
    -expint(1, z*exp_polar(-I*pi/2))/2 - expint(1, z*exp_polar(I*pi/2))/2

    See Also
    ========

    Si: Sine integral.
    Shi: Hyperbolic sine integral.
    Chi: Hyperbolic cosine integral.
    Ei: Exponential integral.
    expint: Generalised exponential integral.
    E1: Special case of the generalised exponential integral.
    li: Logarithmic integral.
    Li: Offset logarithmic integral.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral

    c                 C   s   t jS ro   )r   r)   r	  r1   r1   r2   r     s    z	Ci._atinfc                 C   s   t t S ro   )r   r	   r	  r1   r1   r2   r    s    zCi._atneginfc                 C   s   t |tt  S ro   r   r   r	   r   r1   r1   r2   r    s    zCi._minusfactorc                 C   s   t |tt d |  S r   r   r   r	   r
  r1   r1   r2   r    s    zCi._Ifactorc                 K   s(   t tt| t tt |   d S r   )r   r   r   ry   r1   r1   r2   r     s    zCi._eval_rewrite_as_expintNr   c                 C   s   | j d j|||d}||d}|tjkrJ|j|dt|jrBdndd}|jr|	|\}}|d krnt
|n|}t
|||  t S |jr| |S | S d S Nr   r   r   r   r   r&   r   r   r   rA   r   r   r   rF   r   r   r   ra   r+   r,   r/   r   r   rN   r   r   r   r1   r1   r2   r     s    

zCi._eval_as_leading_termc           	         s   ddl m} |d }|tjkr| jd   fddtt|d d D |d |  |g } fddtt|d d D |d |  |g }t   t|  t	   t|   S t
t| ||||S )Nr   r   c                    s.   g | ]&}t j| td |   d |   qS r   r  r   r   r1   r2   r     s   z$Ci._eval_aseries.<locals>.<listcomp>r5   r%   c                    s6   g | ].}t j| td | d   d | d   qS r   r  r   r   r1   r2   r     s   )r   r   r   rB   r&   r   r  r    r   r   r   r   r   r  r   r   r2   r     s     



(zCi._eval_aseries)Nr   )r   r   r   r   r   r  r   r   r   r   r   r  r  r  r   r   r   r   r1   r1   r   r2   r     s   O




r   c                   @   sd   e Zd ZdZeZejZe	dd Z
e	dd Ze	dd Ze	dd	 Zd
d Zdd ZdddZdS )r   a  
    Sinh integral.

    Explanation
    ===========

    This function is defined by

    .. math:: \operatorname{Shi}(z) = \int_0^z \frac{\sinh{t}}{t} \mathrm{d}t.

    It is an entire function.

    Examples
    ========

    >>> from sympy import Shi
    >>> from sympy.abc import z

    The Sinh integral is a primitive of $\sinh(z)/z$:

    >>> Shi(z).diff(z)
    sinh(z)/z

    It is unbranched:

    >>> from sympy import exp_polar, I, pi
    >>> Shi(z*exp_polar(2*I*pi))
    Shi(z)

    The $\sinh$ integral behaves much like ordinary $\sinh$ under
    multiplication by $i$:

    >>> Shi(I*z)
    I*Si(z)
    >>> Shi(-z)
    -Shi(z)

    It can also be expressed in terms of exponential integrals, but beware
    that the latter is branched:

    >>> from sympy import expint
    >>> Shi(z).rewrite(expint)
    expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2

    See Also
    ========

    Si: Sine integral.
    Ci: Cosine integral.
    Chi: Hyperbolic cosine integral.
    Ei: Exponential integral.
    expint: Generalised exponential integral.
    E1: Special case of the generalised exponential integral.
    li: Logarithmic integral.
    Li: Offset logarithmic integral.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral

    c                 C   s   t jS ro   r   rB   r	  r1   r1   r2   r   I  s    z
Shi._atinfc                 C   s   t jS ro   )r   rD   r	  r1   r1   r2   r  M  s    zShi._atneginfc                 C   s
   t | S ro   )r   r   r1   r1   r2   r  Q  s    zShi._minusfactorc                 C   s   t t| | S ro   )r   r   r
  r1   r1   r2   r  U  s    zShi._Ifactorc                 K   s,   t |t ttt |  d tt d  S r   )r   r   r   r	   ry   r1   r1   r2   r   Y  s    zShi._eval_rewrite_as_expintc                 C   s   | j d }|jrdS d S r`   rc   r   r1   r1   r2   rd   ]  s    
zShi._eval_is_zeroNr   c                 C   sf   | j d |}||d}|tjkrD|j|dt|jr<dndd}|jrN|S |j	s^| 
|S | S d S )Nr   r   r   r   )r&   r   r   r   rA   r   r   r   rF   r   r+   r   r1   r1   r2   r   b  s    

zShi._eval_as_leading_term)Nr   )r   r   r   r   r   r  r   r)   r   r   r   r  r  r  r   rd   r   r1   r1   r1   r2   r     s   ?



r   c                   @   s\   e Zd ZdZeZejZe	dd Z
e	dd Ze	dd Ze	dd	 Zd
d ZdddZdS )r   a   
    Cosh integral.

    Explanation
    ===========

    This function is defined for positive $x$ by

    .. math:: \operatorname{Chi}(x) = \gamma + \log{x}
                         + \int_0^x \frac{\cosh{t} - 1}{t} \mathrm{d}t,

    where $\gamma$ is the Euler-Mascheroni constant.

    We have

    .. math:: \operatorname{Chi}(z) = \operatorname{Ci}\left(e^{i \pi/2}z\right)
                         - i\frac{\pi}{2},

    which holds for all polar $z$ and thus provides an analytic
    continuation to the Riemann surface of the logarithm.
    By lifting to the principal branch we obtain an analytic function on the
    cut complex plane.

    Examples
    ========

    >>> from sympy import Chi
    >>> from sympy.abc import z

    The $\cosh$ integral is a primitive of $\cosh(z)/z$:

    >>> Chi(z).diff(z)
    cosh(z)/z

    It has a logarithmic branch point at the origin:

    >>> from sympy import exp_polar, I, pi
    >>> Chi(z*exp_polar(2*I*pi))
    Chi(z) + 2*I*pi

    The $\cosh$ integral behaves somewhat like ordinary $\cosh$ under
    multiplication by $i$:

    >>> from sympy import polar_lift
    >>> Chi(polar_lift(I)*z)
    Ci(z) + I*pi/2
    >>> Chi(polar_lift(-1)*z)
    Chi(z) + I*pi

    It can also be expressed in terms of exponential integrals:

    >>> from sympy import expint
    >>> Chi(z).rewrite(expint)
    -expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2

    See Also
    ========

    Si: Sine integral.
    Ci: Cosine integral.
    Shi: Hyperbolic sine integral.
    Ei: Exponential integral.
    expint: Generalised exponential integral.
    E1: Special case of the generalised exponential integral.
    li: Logarithmic integral.
    Li: Offset logarithmic integral.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral

    c                 C   s   t jS ro   r  r	  r1   r1   r2   r     s    z
Chi._atinfc                 C   s   t jS ro   r  r	  r1   r1   r2   r    s    zChi._atneginfc                 C   s   t |tt  S ro   r  r   r1   r1   r2   r    s    zChi._minusfactorc                 C   s   t |tt d |  S r   r  r
  r1   r1   r2   r    s    zChi._Ifactorc                 K   s.   t  t d t|ttt t |  d  S r   )r   r	   r   r   ry   r1   r1   r2   r     s    zChi._eval_rewrite_as_expintNr   c                 C   s   | j d j|||d}||d}|tjkrJ|j|dt|jrBdndd}|jr|	|\}}|d krnt
|n|}t
|||  t S |jr| |S | S d S r  r  r  r1   r1   r2   r     s    

zChi._eval_as_leading_term)Nr   )r   r   r   r   r   r  r   r   r   r   r   r  r  r  r   r   r1   r1   r1   r2   r   p  s   J



r   c                   @   sJ   e Zd ZdZdZedd ZdddZdd	 ZeZ	d
d Z
dd ZeZdS )FresnelIntegralz& Base class for the Fresnel integrals.Tc                 C   s   |t jkrt jS |jrt jS t j}|}d}|d}|d k	rJ| }|}d}|t}|d k	rr| jt | }|}d}|r|| | S d S )NFrw   T)	r   rB   rj   rF   r)   rC   rJ   r   _sign)rM   rl   ZprefactZnewargchangedr   r1   r1   r2   rP     s&    


zFresnelIntegral.evalr5   c                 C   s4   |dkr&|  tjt | jd d  S t| |d S r   )r  r   rj   r	   r&   r   r8   r1   r1   r2   r:   		  s    zFresnelIntegral.fdiffc                 C   s   | j d jS rY   r^   r\   r1   r1   r2   r   	  s    z&FresnelIntegral._eval_is_extended_realc                 C   s   | j d jS rY   rc   r\   r1   r1   r2   rd   	  s    zFresnelIntegral._eval_is_zeroc                 C   s   |  | jd  S rY   rZ   r\   r1   r1   r2   r]   	  s    zFresnelIntegral._eval_conjugateN)r5   )r   r   r   r   r   r   rP   r:   r   rb   rd   r]   r3   r*   r1   r1   r1   r2   r    s   

r  c                       s^   e Zd ZdZeZej Ze	e
dd Zdd Zdd Zdd	 ZdddZ fddZ  ZS )rr   ay  
    Fresnel integral S.

    Explanation
    ===========

    This function is defined by

    .. math:: \operatorname{S}(z) = \int_0^z \sin{\frac{\pi}{2} t^2} \mathrm{d}t.

    It is an entire function.

    Examples
    ========

    >>> from sympy import I, oo, fresnels
    >>> from sympy.abc import z

    Several special values are known:

    >>> fresnels(0)
    0
    >>> fresnels(oo)
    1/2
    >>> fresnels(-oo)
    -1/2
    >>> fresnels(I*oo)
    -I/2
    >>> fresnels(-I*oo)
    I/2

    In general one can pull out factors of -1 and $i$ from the argument:

    >>> fresnels(-z)
    -fresnels(z)
    >>> fresnels(I*z)
    -I*fresnels(z)

    The Fresnel S integral obeys the mirror symmetry
    $\overline{S(z)} = S(\bar{z})$:

    >>> from sympy import conjugate
    >>> conjugate(fresnels(z))
    fresnels(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(fresnels(z), z)
    sin(pi*z**2/2)

    Defining the Fresnel functions via an integral:

    >>> from sympy import integrate, pi, sin, expand_func
    >>> integrate(sin(pi*z**2/2), z)
    3*fresnels(z)*gamma(3/4)/(4*gamma(7/4))
    >>> expand_func(integrate(sin(pi*z**2/2), z))
    fresnels(z)

    We can numerically evaluate the Fresnel integral to arbitrary precision
    on the whole complex plane:

    >>> fresnels(2).evalf(30)
    0.343415678363698242195300815958

    >>> fresnels(-2*I).evalf(30)
    0.343415678363698242195300815958*I

    See Also
    ========

    fresnelc: Fresnel cosine integral.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Fresnel_integral
    .. [2] https://dlmf.nist.gov/7
    .. [3] https://mathworld.wolfram.com/FresnelIntegrals.html
    .. [4] https://functions.wolfram.com/GammaBetaErf/FresnelS
    .. [5] The converging factors for the fresnel integrals
            by John W. Wrench Jr. and Vicki Alley

    c                 G   s   | dk rt jS t|}t|dkrl|d }td  |d  d|  d  d|  d|  d  d|  d   | S |d |d  |   t dd|  d  td|  d    d|  d td|  d   S d S )	Nr   r5   rw   r%         r|   rR   r   r)   r   rS   r	   r   rU   r/   rV   r  r1   r1   r2   rX   u	  s    Bzfresnels.taylor_termc                 K   sN   t jt d tt jt d tt | ttt jt d tt |    S Nr  r%   r   rC   r   r4   r   r	   ry   r1   r1   r2   r   	  s    zfresnels._eval_rewrite_as_erfc                 K   sF   t |d  d ttddgtddtddgt d  |d  d  S )Nr|      r  r%         )r	   r"   r
   ry   r1   r1   r2   r~   	  s    zfresnels._eval_rewrite_as_hyperc              	   K   sr   t |tdd  td|d tdd  | tdd   tg dgtddgtdddgt d  |d  d  S )N	   r  r%   r|   r5   r   r$  )r	   r
   r   r#   ry   r1   r1   r2   rz   	  s    :4z!fresnels._eval_rewrite_as_meijergNr   c                 C   s   ddl m} | jd j|||d}||d}|tjkrV|j|dt|j	rNdndd}|j
rlt|d  d S |tjtjfkr|tjkrd	nd
}|tj ||| S | |S d S )Nr   r   r   r   r   r   r|   r"  r5   rw   )r   r   r&   r   r   r   r   r   r   r   rF   r	   rB   rD   rj   r+   r,   r/   r   r   r   rN   r   r   r1   r1   r2   r   	  s    
zfresnels._eval_as_leading_termc           
         s
  ddl m} |d }|tjtj fkr| jd  fddtd D }dd  g fddtd D  }dd |D }d	d |D }|tjkrdnd
}	|	tj td t|  t	d t|   
|tdt |  |d   | S t  |||S )Nr   r   c                    sn   g | ]f}d | d  k rt j| td | d  dd| d  d | d   dd|   td|   qS r  r|   r5   r%   r  r   rU   rl   r1   r2   r   	  s
    6z*fresnels._eval_aseries.<locals>.<listcomp>r5   r%   c                    sv   g | ]n}d | d  k rt j| td | d  dd| d  d | d   dd| d   td| d   qS r  r5   r%   r  r   r(  r1   r2   r   	  s
    >c                 S   s   g | ]}t d t  | qS r   r   r	   r   rO   r1   r1   r2   r   	  s     c                 S   s   g | ]}t d t  | qS r   r*  r+  r1   r1   r2   r   	  s     rw   )r   r   r   rB   r&   r   rj   r    r   r   r   r   r	   r   r   
r,   rU   r   r/   r   r   r   r  r  r   r   r(  r2   r   	  s(    
0 zfresnels._eval_aseries)Nr   )r   r   r   r   r    r  r   rC   r  r   r   rX   r   r~   rz   r   r   r   r1   r1   r   r2   rr   	  s   T
rr   c                       s\   e Zd ZdZeZejZe	e
dd Zdd Zdd Zdd	 ZdddZ fddZ  ZS )rq   au  
    Fresnel integral C.

    Explanation
    ===========

    This function is defined by

    .. math:: \operatorname{C}(z) = \int_0^z \cos{\frac{\pi}{2} t^2} \mathrm{d}t.

    It is an entire function.

    Examples
    ========

    >>> from sympy import I, oo, fresnelc
    >>> from sympy.abc import z

    Several special values are known:

    >>> fresnelc(0)
    0
    >>> fresnelc(oo)
    1/2
    >>> fresnelc(-oo)
    -1/2
    >>> fresnelc(I*oo)
    I/2
    >>> fresnelc(-I*oo)
    -I/2

    In general one can pull out factors of -1 and $i$ from the argument:

    >>> fresnelc(-z)
    -fresnelc(z)
    >>> fresnelc(I*z)
    I*fresnelc(z)

    The Fresnel C integral obeys the mirror symmetry
    $\overline{C(z)} = C(\bar{z})$:

    >>> from sympy import conjugate
    >>> conjugate(fresnelc(z))
    fresnelc(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(fresnelc(z), z)
    cos(pi*z**2/2)

    Defining the Fresnel functions via an integral:

    >>> from sympy import integrate, pi, cos, expand_func
    >>> integrate(cos(pi*z**2/2), z)
    fresnelc(z)*gamma(1/4)/(4*gamma(5/4))
    >>> expand_func(integrate(cos(pi*z**2/2), z))
    fresnelc(z)

    We can numerically evaluate the Fresnel integral to arbitrary precision
    on the whole complex plane:

    >>> fresnelc(2).evalf(30)
    0.488253406075340754500223503357

    >>> fresnelc(-2*I).evalf(30)
    -0.488253406075340754500223503357*I

    See Also
    ========

    fresnels: Fresnel sine integral.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Fresnel_integral
    .. [2] https://dlmf.nist.gov/7
    .. [3] https://mathworld.wolfram.com/FresnelIntegrals.html
    .. [4] https://functions.wolfram.com/GammaBetaErf/FresnelC
    .. [5] The converging factors for the fresnel integrals
            by John W. Wrench Jr. and Vicki Alley

    c                 G   s   | dk rt jS t|}t|dkrl|d }td  |d  d|  d  d|  d|  d  d|  d   | S ||d  |   t dd|   td|     d|  d td|    S d S )	Nr   r5   rw   r%   r  r|   r  rR   r  r  r1   r1   r2   rX   
  s    Bzfresnelc.taylor_termc                 K   sN   t jt d tt jt d tt | ttt jt d tt |    S r   r!  ry   r1   r1   r2   r   
  s    zfresnelc._eval_rewrite_as_erfc                 K   s6   |t tddgtjtddgtd  |d  d  S )Nr5   r     r%   r$  )r"   r
   r   rj   r	   ry   r1   r1   r2   r~   !
  s    zfresnelc._eval_rewrite_as_hyperc              	   K   sj   t |tdd  tdt|d d t| d  tg dgtddgtdddgt d  |d  d  S )Nr|   r  r%   r5   r   r$  )r	   r
   r   r   r#   ry   r1   r1   r2   rz   $
  s    24z!fresnelc._eval_rewrite_as_meijergNr   c                 C   s   ddl m} | jd j|||d}||d}|tjkrV|j|dt|j	rNdndd}|j
r`|S |tjtjfkr|tjkr~dnd}|tj ||| S | |S d S )	Nr   r   r   r   r   r   r5   rw   )r   r   r&   r   r   r   r   r   r   r   rF   rB   rD   rj   r+   r&  r1   r1   r2   r   (
  s    
zfresnelc._eval_as_leading_termc           
         s  ddl m} |d }|tjtj fkr| jd  fddt D }dd  g fddtd D  }dd |D }d	d |D }|tjkrdnd
}	|	tj td t|  t	d t|   
|tdt |  |d   | S t  |||S )Nr   r   c                    sn   g | ]f}d | d  k rt j| td | d  dd| d  d | d   dd|   td|   qS r'  r  r   r(  r1   r2   r   A
  s
    6z*fresnelc._eval_aseries.<locals>.<listcomp>r5   r%   c                    sv   g | ]n}d | d  k rt j| td | d  dd| d  d | d   dd| d   td| d   qS r)  r  r   r(  r1   r2   r   D
  s
    >c                 S   s   g | ]}t d t  | qS r   r*  r+  r1   r1   r2   r   H
  s     c                 S   s   g | ]}t d t | qS r   r*  r+  r1   r1   r2   r   I
  s     rw   )r   r   r   rB   r&   r   rj   r   r   r    r   r   r	   r   r   r,  r   r(  r2   r   7
  s(    
0 zfresnelc._eval_aseries)Nr   )r   r   r   r   r   r  r   rC   r  r   r   rX   r   r~   rz   r   r   r   r1   r1   r   r2   rq   	  s   T
rq   c                       s>   e Zd ZdZedd Z fddZdddZd	d
 Z  Z	S )r   zi
    Helper function to make the $\mathrm{erf}(z)$ function
    tractable for the Gruntz algorithm.

    c                 C   s   |j rtjS d S ro   )rF   r   rC   )rM   rN   r1   r1   r2   rP   `
  s    z
_erfs.evalc           
         s   ddl m} |d }|tjkrn| jd   fddt|D }|d d| d   |}t| |||| S |t	}	|	tjkr| jd   fddt|D }|d d| d   |}t| |||| S t
 ||||S )Nr   r   c                    sP   g | ]H}d t t td|  td |   t| d   d| d    qS r5   r%   r  r   r	   r   r   r   r   r1   r2   r   l
  s   z'_erfs._eval_aseries.<locals>.<listcomp>r5   r%   c                    sP   g | ]H}d t t td|  td |   t| d   d| d    qS r.  r/  r   r   r1   r2   r   w
  s   )r   r   r   rB   r&   r   r   r   rJ   r   r   r   )
r,   rU   r   r/   r   r   r   lorO   r   r   r2   r   e
  s$    






z_erfs._eval_aseriesr5   c                 C   s<   |dkr.| j d }dtt d| t|  S t| |d S )Nr5   r   rR   r%   )r&   r   r	   r   r   r,   r9   rl   r1   r1   r2   r:   
  s    
z_erfs.fdiffc                 K   s   t jt| t|d  S r   )r   rC   r4   r   ry   r1   r1   r2   _eval_rewrite_as_intractable
  s    z"_erfs._eval_rewrite_as_intractable)r5   )
r   r   r   r   r   rP   r   r:   r3  r   r1   r1   r   r2   r   Z
  s   

r   c                       sN   e Zd ZdZ fddZdddZdd Zd fdd	Zd fdd	Z  Z	S )r   z~
    Helper function to make the $\mathrm{Ei}(z)$ and $\mathrm{li}(z)$
    functions tractable for the Gruntz algorithm.

    c                    s|   ddl m} |d tjkr0tt| ||||S | jd   fddt|D }|d |d   |}t	| 
|||| S )Nr   r   c                    s$   g | ]}t |d   |d    qS r   r   r   r   r1   r2   r   
  s     z&_eis._eval_aseries.<locals>.<listcomp>r5   )r   r   r   rB   r   r   r   r&   r   r   r   )r,   rU   r   r/   r   r   r0  r1  r   r   r2   r   
  s    
z_eis._eval_aseriesr5   c                 C   s2   |dkr$| j d }tj| t| S t| |d S )Nr5   r   )r&   r   rC   r   r   r2  r1   r1   r2   r:   
  s    
z
_eis.fdiffc                 K   s   t | t| S ro   )r   r   ry   r1   r1   r2   r3  
  s    z!_eis._eval_rewrite_as_intractableNr   c                    sF   | j d |d}|jr4| j| j  }|j|||dS t j|||dS )Nr   r   )r&   r   rF   r3  r   r   )r,   r/   r   r   r   r   r   r1   r2   r   
  s
    z_eis._eval_as_leading_termc                    sB   | j d |d}|jr2| j| j  }||||S t |||S rY   )r&   r   rF   r3  r   r   r   r   r1   r2   r   
  s
    z_eis._eval_nseries)r5   )Nr   )r   )
r   r   r   r   r   r:   r3  r   r   r   r1   r1   r   r2   r   
  s   
r   N)T)Lr   Z
sympy.corer   Zsympy.core.addr   Zsympy.core.cacher   Zsympy.core.functionr   r   r   Zsympy.core.numbersr   r	   r
   Zsympy.core.relationalr   Zsympy.core.powerr   Zsympy.core.singletonr   Zsympy.core.symbolr   Zsympy.core.sympifyr   Z(sympy.functions.combinatorial.factorialsr   r   r   Z$sympy.functions.elementary.complexesr   r   r   Z#sympy.functions.elementary.integersr   r   Z(sympy.functions.elementary.miscellaneousr   r   Z&sympy.functions.elementary.exponentialr   r   r   Z%sympy.functions.elementary.hyperbolicr   r   Z(sympy.functions.elementary.trigonometricr   r    r!   Zsympy.functions.special.hyperr"   r#   r3   r4   r   r   r   r=   rH   rI   r   r   r   r   r   r   r   r   r   r   r  rr   rq   r   r   r1   r1   r1   r2   <module>   sf   
 b @ A ]Ra 3 ;# (`@y ju8  "1