U
    	-e36                     @   s*  d dl mZmZmZmZmZmZmZmZm	Z	m
Z
mZmZmZmZmZ d dl mZmZmZmZmZmZ d dlmZmZmZmZmZmZ d dlmZ d dlm Z  d dl!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z' d dl(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4 d dlm5Z5 d d	l6m7Z7 ed
\Z8Z9Z:dd Z;dd Z<dd Z=dd Z>dd Z?dd Z@dd ZAdd ZBdd ZCdd ZDdd  ZEd!d" ZFd#d$ ZGd%d& ZHd'd( ZIe5d)d* ZJd+d, ZKd-d. ZLd/d0 ZMd1d2 ZNd3d4 ZOd5d6 ZPd7d8 ZQd9d: ZRd;d< ZSd=d> ZTd?d@ ZUdAdB ZVdCdD ZWdEdF ZXdGdH ZYdIdJ ZZdKdL Z[dMS )N    )SpioosymbolsFunctionRationalIntegerTupleSymbolEqNeLeLtGtGe)
EulerGammaGoldenRatioCatalanLambdaMulPow)	Piecewisesqrtceilingexpsincos)raises)implemented_function)eyeMatrixMatrixSymbolIdentityHadamardProductSparseMatrix)jnynbesseljbesselybesselibesselkhankel1hankel2airyaiairybiairyaiprimeairybiprime)XFAIL
julia_codezx,y,zc                   C   s,   t tddkstt tddks(td S )NC   Z67z-1)r3   r   AssertionError r7   r7   `/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/sympy/printing/tests/test_julia.pytest_Integer   s    r9   c                   C   s   t tdddkstt tdddks,tt tdddksBtt td	ddksXtt ttdd d
ksrtt tddt dkstd S )N      z3 // 7   	   2iz-3 // 7z
x + 3 // 7z(3 // 7) * x)r3   r   r6   xr7   r7   r7   r8   test_Rational   s    rA   c                   C   s   t tttdkstt tttdks,tt tttdksBtt tttdksXtt tttdksntt t	ttdkstd S )Nzx == yzx != yzx <= yzx < yzx > yzx >= y)
r3   r   r@   yr6   r   r   r   r   r   r7   r7   r7   r8   test_Relational!   s    rC   c                   C   sH   t tttt dkstt ttdks0tt ttdksDtd S )Nzsin(x) .^ cos(x)zabs(x)zceil(x))r3   r   r@   r   r6   absr   r7   r7   r7   r8   test_Function*   s    rE   c               
   C   s   t td dkstt ttd  dks,tt ttdd dksFttdttdt } t d| td ttt    td t  d	kstt td
tttttddddddddkstd S )Nr:   zx .^ 3zx .^ (y .^ 3)   zx .^ (2 // 3)g   g      @z.(3.5 * 2 * x) .^ (-x + y .^ x) ./ (x .^ 2 + y)F)evaluater5   z-2 * x ./ (y .* y))	r3   r@   r6   rB   r   r   r   r   r   )rG   r7   r7   r8   test_Pow0   s    *rK   c                   C   sR   t tt dkstt tt dks(tt tt dks<tt t dksNtd S )Nx .* yzx + yzx - yz-x)r3   r@   rB   r6   r7   r7   r7   r8   test_basic_ops<   s    rM   c                   C   s  t dt dkstt td t td   kr8dks>n tt dtt dksVtt ttj  t td   kr~dksn tt ttdkstt ttj t td   krdksn tt dt d	kstt td t td   krd	ksn tt td d
kstd S )NrH   z1 ./ xr5   g      z1 ./ sqrt(x)g      zsqrt(x)g      ?z1 / piz1 / sqrt(pi))r3   r@   r6   r   r   Halfr   r7   r7   r7   r8   test_1_over_x_and_sqrtC   s    *.,,rO   c                   C   s^  t dt dkstt tt dks(tt dt dks<tt tt dksPtt td dksdtt tt dksxtt tt dkstt dt t d	kstt dt t t d
kstt tt dkstt dt t dkstt tt t dkstt tt t dks tt dt t dks:tt dt t t t dks\tt dt t dksvtt tdd dkstt tdd t dkstt tt t dkstt tt t dkstt tt tt  dks tt tt t dkstt td t dks4tt tdd t t t dksZtd S )Nr:   z3 * xzpi * xz3 ./ xzpi ./ xzx / 3zx / pirL   z
3 * x .* yz3 * pi * x .* yzx ./ yz
3 * x ./ yzx .* y ./ zzx .* z ./ yrH   z1 ./ (x .* y)rF   z2 * pi * x ./ (y .* z)z3 * pi ./ x   z3 // 5z(3 // 5) * xzx ./ (y .* z)z(x + y) ./ zz(x + y) ./ (x + z)z(x + y) / eulergammazx / (3 * pi)z(3 // 5) * x .* y / pi)r3   r@   r6   r   rB   zr   r   r7   r7   r7   r8   test_mix_number_mult_symbolsQ   s0    "rR   c                   C   s   t td dkstt td dks(tt ttd  dks@tt tt dksTtt ttt  dksltt tt t dkstd S )	Nr:   zpi ^ 3rF   zx .^ 2zx .^ (pi ^ 3)zx .^ yzx .^ (y .^ z)z(x .^ y) .^ z)r3   r   r6   r@   rB   rQ   r7   r7   r7   r8   test_mix_number_pow_symbolsl   s    rS   c                  C   sd   t d} t| dksttd|  dks,ttt dd |  dksHttdd|   d	ks`td S )
NIZimrP   Z5imr:   rF   z(3 // 2) * im   z3 + 4im)r   r3   r6   )rT   r7   r7   r8   	test_imagu   s
    rV   c                   C   s   t tdkstt tdks tt t dks2tt tjdksDtt tjdksVtt tjdkshtt tddks|td S )Nr   ZInfz-InfNaNerH   )	r3   r   r6   r   r   NegativeInfinityrW   ZExp1r   r7   r7   r7   r8   test_constants}   s    rZ   c                   C   s@   t dt dkstt dt dks(tt dt dks<td S )NrF   z
2 * goldenz2 * catalanz2 * eulergamma)r3   r   r6   r   r   r7   r7   r7   r8   test_constants_other   s    r[   c                   C   s   t tt@ dkstt ttB dks(tt t dks:tt tt@ t@ dksRtt ttB tB dksjtt tt@ tB dkstt ttB t@ dkstd S )Nzx && yzx || yz!xzx && y && zzx || y || zzz || x && yzz && (x || y))r3   r@   rB   r6   rQ   r7   r7   r7   r8   test_boolean   s    r\   c                  C   s   t tdddgdksttdttd ttgddtgdtdttgg} d}t | |ksbtt | d d df dks~tt | dd d f dkstt tddg d	kstt tdd
g dkstt tttt	 t	 ggdkstd S )NrH   
   z[10]rF   r   zB[1 sin(x / 2)  abs(x);
0          1      pi;
0          e ceil(x)]z	[1, 0, 0]z[1 sin(x / 2) abs(x)]zzeros(0, 0)r:   zzeros(0, 3)z[x x - y -y])
r3   r    r6   r   r@   rD   r   r   r   rB   Aexpectedr7   r7   r8   test_Matrices   s    ra   c                  C   sJ   t dtdt dt t d gg} t| dks4tt| jdksFtd S )NrH   rF   r:   rP   z"[1 sin(2 ./ x) (3 // 5) * pi ./ x]z$[1, sin(2 ./ x), (3 // 5) * pi ./ x])r    r   r@   r   r3   r6   Tr_   r7   r7   r8   test_vector_entries_hadamard   s    $rd   c                  C   sH   t dtdt dt t d gddtt gg} d}t| |ksDtd S )NrH   rF   r:   rP   z.[1 sin(2/x) 3*pi/(5*x);
1        2        x*y])r    r   r@   r   rB   r3   r6   r^   r7   r7   r8   "test_Matrices_entries_not_hadamard   s    0re   c                  C   s   t ddd} td| | }td| | }t|| dks8tt|| dksLttd| | d	ksdtt|d | d
ks|tt||dt|    dkstt|td  dkstt|d dkstt|tj dkstd S )NnT)integerr_   BzA * BzB * ArF   z	2 * A * Bz	2 * B * Ar:   zA * (3 * eye(n) + B)zA ^ (x .^ 2)zA ^ 3zA ^ (1 // 2))r
   r!   r3   r6   r"   r@   r   rN   )rf   r_   rh   r7   r7   r8   test_MatrixSymbol   s     ri   c                   C   s   t dtd dkstd S )N   r:   z
6 * eye(3))r3   r"   r6   r7   r7   r7   r8   test_special_matrices   s    rk   c                   C   s   t dddddddggdd	d
gdgdks,tt ddks<tt dgdksNtt ddks^tt tdddg dksxtt dtt dtd ffdkstt dtdtddg g fdkstd S )NrH   rF   r:   rU   rP   rj   r;      r=   r]      z5Any[1, 2, 3, Any[4, 5, Any[6, 7]], 8, Any[9, 10], 11])rH   rF   )r:   rU   z(1, 2, (3, 4))zAny[1])rH   z(1,)z	(1, 2, 3)z(1, x .* y, (3, x .^ 2))r   z.(1, [1 0 0;
0 1 0;
0 0 1], zeros(0, 0), Any[]))r3   r6   r	   r@   rB   r   r    r7   r7   r7   r8   test_containers   s    ""rn   c                  C   s4   t tt t ddd} dtd }| |ks0td S )NmeF	assign_toinlinez)const Catalan = %s
me = (x + y) / Catalan   )r3   r@   rB   r   Zevalfr6   )sourcer`   r7   r7   r8   test_julia_noninline   s
    ru   c                     s  t ttdk ftd df t dks*tt dddks>tt ddd	d
ksTtt td tdk ftd tdk ftd tdk ftd df d} t | kstt ddd|  kstt ddd	dkstt ttdk ftd tdkftttdkf tt fdd d S )NrH   rF   Tz((x < 1) ? (x) : (x .^ 2))rrq   zr = ((x < 1) ? (x) : (x .^ 2))Frp   z,if (x < 1)
    r = x
else
    r = x .^ 2
endr:   rU   rP   zI((x < 1) ? (x .^ 2) :
(x < 2) ? (x .^ 3) :
(x < 3) ? (x .^ 4) : (x .^ 5))zr = zmif (x < 1)
    r = x .^ 2
elseif (x < 2)
    r = x .^ 3
elseif (x < 3)
    r = x .^ 4
else
    r = x .^ 5
endr   c                      s   t  S )Nr2   r7   exprr7   r8   <lambda>       z&test_julia_piecewise.<locals>.<lambda>)r   r@   r3   r6   r   r   
ValueError)r`   r7   rx   r8   test_julia_piecewise   s"    
:,r}   c                  C   sr   t ttdk ftd df} td|  dks.tt| t dksBtt| tt  dksZtt| d dksntd S )	NrH   rF   Tz2 * ((x < 1) ? (x) : (x .^ 2))z((x < 1) ? (x) : (x .^ 2)) ./ xz&((x < 1) ? (x) : (x .^ 2)) ./ (x .* y)r:   z((x < 1) ? (x) : (x .^ 2)) / 3)r   r@   r3   r6   rB   )pwr7   r7   r8    test_julia_piecewise_times_const  s
    r   c                  C   sP   t dddgg} t| dddks$tt ddgddgg} t| ddd	ksLtd S )
NrH   rF   r:   arw   za = [1 2 3]rU   r_   zA = [1 2;
3 4])r    r3   r6   rc   r7   r7   r8   test_julia_matrix_assign_to  s    r   c                     sf   t dddgg tddd} tdddt | ddks<ttt fdd	 tt fd
d	 d S )NrH   rF   r:   rh   Crw   zB = [1 2 3]c                      s   t  tdS Nrw   )r3   r@   r7   rc   r7   r8   rz     r{   z2test_julia_matrix_assign_to_more.<locals>.<lambda>c                      s   t  dS r   r2   r7   r_   r   r7   r8   rz     r{   r    r!   r3   r6   r   r|   rh   r7   r   r8    test_julia_matrix_assign_to_more  s    r   c                     sP   t dgg tddd} tdddt | ddks8ttt fdd	 d S )
Nr:   rh   rH   r   rF   rw   zB = [3]c                      s   t  dS r   r2   r7   r   r7   r8   rz   #  r{   z'test_julia_matrix_1x1.<locals>.<lambda>r   r   r7   r   r8   test_julia_matrix_1x1  s
    r   c                  C   s   t tdtt gg} t| d d | d  | d  dks<ttddd} t| dksXtt| d d t| d  | d  d	ksttt| d
kstd S )NrF   r   r   )r   rH   )r   rF   zx .^ 2 + x .* y + 2ZAArH   r:   z%sin(AA[1,2]) + AA[1,1] .^ 2 + AA[1,3]zAA[1,1] + AA[1,2] + AA[1,3])r    r@   rB   r3   r6   r!   r   sumrc   r7   r7   r8   test_julia_matrix_elements&  s    ("r   c                   C   sH   t ddkstt tjdks"tt ddks2tt tjdksDtd S )NTtrueFfalse)r3   r6   r   r   r   r7   r7   r7   r8   test_julia_boolean0  s    r   c                  C   s8   t tjdksttd} t | ttdks4td S )Nz/# Not supported in Julia:
# ComplexInfinity
zoofz:# Not supported in Julia:
# Derivative
Derivative(f(x), x))r3   r   ZComplexInfinityr6   r   r@   diff)r   r7   r7   r8   test_julia_not_supported7  s    r   c                  C   sD   t d} t d}t| tdk f|tdkfd}t|dddks@td S )	NZendlessZ	elsewherer   rH   )rH   TF)rr   zCif (x < 0)
    endless
elseif (x <= 1)
    elsewhere
else
    1
end)r   r   r@   r3   r6   )t1t2r~   r7   r7   r8   %test_trick_indent_with_end_else_wordsE  s    
r   c                  C   s   t ddd} t ddd}t ddd}t ddd}t| |}t|dksJtt|| dks^tt|| | d	ksvtt||  d
kstt|t t dkstd S )Nr_   r:   rh   vrH   hzA .* Bz(A .* B) * vzh * (A .* B) * vz(A .* B) * Az(x .* y) * (A .* B))r!   r#   r3   r6   r@   rB   )r_   rh   r   r   r   r7   r7   r8   test_haramardT  s    
r   c                  C   sL   t ddi } d| d< d| d< d| d< d	| d
< tt | d< t| dksHtd S )NrP   rj   r]   )rF   rF      )rH   rF      )rH   r:      )r   r:   )r:   r   zHsparse([4, 2, 3, 1, 2], [1, 3, 3, 4, 4], [x .* y, 20, 10, 30, 22], 5, 6))r$   r@   rB   r3   r6   )Mr7   r7   r8   test_sparseb  s    r   c                  C   s   t d} ttttfD ] }t|| t|jd kstqt	t
ttfD ]}t|t|jd ksBtqBtt| tdksxttt| tdksttt| tdksttt| tdkstd S )Nrf   z(n, x)z(x)zhankelh1(n, x)zhankelh2(n, x)z?sqrt(2) * sqrt(pi) * sqrt(1 ./ x) .* besselj(n + 1 // 2, x) / 2z?sqrt(2) * sqrt(pi) * sqrt(1 ./ x) .* bessely(n + 1 // 2, x) / 2)r
   r'   r(   r)   r*   r3   r@   __name__r6   r-   r/   r.   r0   r+   r,   r%   r&   )rf   r   r7   r7   r8   test_specfunn  s    r   c                  C   sx   t ddd} t ddd}t ddd}t| d dks8ttd| d  dksPt|d || | }t|d	ksttd S )
Nr_   rH   r:   rh   r   r   zA[1,1]z
3 * A[1,1]z(A - B)[1,1])r!   r3   r6   subs)r_   rh   r   Fr7   r7   r8   test_MatrixElement_printingz  s    r   N)\Z
sympy.corer   r   r   r   r   r   r   r	   r
   r   r   r   r   r   r   r   r   r   r   r   r   Zsympy.functionsr   r   r   r   r   r   Zsympy.testing.pytestr   Zsympy.utilities.lambdifyr   Zsympy.matricesr   r    r!   r"   r#   r$   Zsympy.functions.special.besselr%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   Zsympy.printing.juliar3   r@   rB   rQ   r9   rA   rC   rE   rK   rM   rO   rR   rS   rV   rZ   r[   r\   ra   rd   re   ri   rk   rn   ru   r}   r   r   r   r   r   r   r   r   r   r   r   r   r7   r7   r7   r8   <module>   sV   D   8			



	 


