U
    ,-e$                     @   s  d dl Z d dlZd dlmZ d dlmZmZmZ d dlm	Z	 d dl
Z
d dl
mZ d dlmZ ddlmZ dd	lmZ ed
d Zedd Zedd Zedddd Zdd Zeee	dZeded eedZeded eeedd eje	dddZed ed eedZed!ed G d"d# d#eZG d$d% d%eZee
j j!d&d'd(Z"ee
j j!d&d)d*Z#ee
j j!d&d+d,Z$ee
j j!d&d-d.Z%e j&G d/d0 d0Z'e
j j!d&d1d2Z(G d3d4 d4Z)dS )5    N)import_module)AnyListOptional)#min_cut_rematerialization_partition)_guards)
ts_compile   )aot_autograd)register_debug_backendc                 C   s   | S N gmfake_tensor_inputsr   r   a/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/torch/_dynamo/backends/debugging.pyeager   s    r   c                    s4   ddl m}  fdd}||dd| }|  |S )Nr   )make_fxc                     s   t j j|  S r   torchfxInterpreterrunargsr   r   r   runnable_gm   s    z'pre_dispatch_eager.<locals>.runnable_gmT)Zpre_dispatch)Z"torch.fx.experimental.proxy_tensorr   Zprint_readable)r   r   r   r   Zpre_dispatch_gmr   r   r   pre_dispatch_eager   s
    r   c                    s   ddl m   fdd}|S )Nr   )SchemaCheckModec               
      s0       t jj|  W  5 Q R  S Q R X d S r   r   r   r   r   r   r   inner,   s    zeager_debug.<locals>.inner)Z#torch._subclasses.schema_check_moder   )r   r   r    r   r   r   eager_debug%   s    r!   ts)namec                 C   s   t j| S r   )r   Zjitscriptr   r   r   r   torchscript3   s    r%   c                    s    fdd}d|_ |S )Nc                    s   t j | S r   )r   r   r   Z	boxed_runr   fx_gr   r   r   :   s    zboxed_nop.<locals>.runT)Z_boxed_call)r'   example_inputsr   r   r&   r   	boxed_nop9   s    r)   )fw_compilerpartition_fn	aot_eager)r#   Zcompiler_fn)r*   aot_eager_default_partitionerc                   C   s   t d S )Nztorch._inductor.compile_fx)r   Zselect_decomp_tabler   r   r   r   <lambda>V   s   r.   Zinductor)compiler)r*   Zbw_compilerZdecompositionsr+   aot_eager_decomp_partitionaot_tsc                   @   s   e Zd ZdS )ReluCompileErrorN__name__
__module____qualname__r   r   r   r   r2   k   s   r2   c                   @   s   e Zd ZdS )TestingOnlyCompileErrorNr3   r   r   r   r   r7   o   s   r7   r   c                 C   s$   | j jD ]}|jtjkrt q| S r   )graphnodestargetr   relur2   r   r(   noder   r   r   relu_compile_error_TESTING_ONLYs   s    r>   c                 C   s4   | j jD ]}|jtjkrtj|_d|_q|   | S )N)FZReluRuntimeError)r8   r9   r:   r   r;   Z_assertr   	recompiler<   r   r   r   relu_runtime_error_TESTING_ONLY{   s    r@   c                 C   s>   | j jD ](}|jtjkrtj|_|jd df|_q|   | S )Nr   r	   )r8   r9   r:   r   r;   addr   r?   r<   r   r   r    relu_accuracy_error_TESTING_ONLY   s    rB   c                 C   s:   | j jD ]}|jdkr q q| S |D ]}|js$t q$| S )Ncall_function)r8   r9   opZis_leafr7   )r   r(   r=   tr   r   r   #non_leaf_compile_error_TESTING_ONLY   s    
rF   c                   @   s   e Zd ZU dZeejj ed< e	ed< e	ed< ee
 ed< e	ed< dZeeejj  ed< dZeeej  ed	< dZee ed
< dd ZdS )ExplainOutputzu
    This is the output of :func:`torch._dynamo.explain()`
    There is no reason to create this class directly.
    graphsgraph_countgraph_break_countbreak_reasonsop_countNops_per_graph
out_guardscompile_timesc           	      C   s^  d| j  d}|d| j d7 }|d| j d7 }|d7 }t| jD ]R\}}|d|d  d7 }|d	|j d7 }|d
7 }|jD ]}|d| d7 }qqD| jd k	r|d7 }t| jD ]6\}}|d|d  d7 }|D ]}|d| d7 }qq| jd k	r<|d7 }t| jD ]0\}}|d|d  d7 }|dt	| 7 }q
| j
d k	rZ|d| j
 d7 }|S )NzGraph Count: 
zGraph Break Count: z
Op Count: zBreak Reasons:
z  Break Reason r	   z:
z    Reason: z    User Stack:
z      zOps per Graph:
z  Ops z    zOut Guards:
z  Guard zCompile Times: )rI   rJ   rL   	enumeraterK   reasonZ
user_stackrM   rN   strrO   )	selfoutputidxZbreak_reasonframe_summaryopsrD   iguardr   r   r   __str__   s0    

zExplainOutput.__str__)r4   r5   r6   __doc__r   r   r   GraphModule__annotations__intr   rM   r   NoderN   r   ZGuardrO   rS   r[   r   r   r   r   rG      s   
rG   c                 C   sT   | |  dd | jjD }|t|7 }| | | jjrF| | j | ||||fS )a  
    This function is a utility which processes a torch.fx.GraphModule and
    accumulates information about its ops, graph breaks, and other details. It
    is intended to be used by the ExplainWithBackend class and
    `torch._dynamo.explain()` to provide details from Dynamo's graph capture.

    Parameters:
        gm (torch.fx.GraphModule): The GraphModule to be processed.
        graphs (list): A list that accumulates all the GraphModules processed.
        op_count (int): The total count of operations in all GraphModules processed so far.
        ops_per_graph (list): A list that accumulates the operations of each GraphModule.
        break_reasons (list): A list that accumulates the reasons for breaks in each GraphModule.

    Returns:
        tuple: A tuple containing the processed GraphModule, the updated lists of graphs,
               operations per graph, and break reasons, and the updated operation count.
    c                 S   s   g | ]}|j d kr|jqS )rC   )rD   r:   ).0r=   r   r   r   
<listcomp>   s     
 z)_explain_graph_detail.<locals>.<listcomp>)appendr8   r9   lenZcompile_subgraph_reasonZgraph_break)r   rH   rL   rM   rK   rX   r   r   r   _explain_graph_detail   s    

re   c                   @   s8   e Zd ZdZdd ZejjdddZe	ddd	Z
d
S )ExplainWithBackenda  
    This class is intended to be used as a backend for `torch.compile`. It is
    composable with other backends. When used in this way, it accumulates
    information about graph breaks, ops, and other info and provides a string
    representation summarizing this information.

    Attributes:
        backend (str): The name of the backend to use for optimization.
        graphs (list): A list of the graphs captured by TorchDynamo.
        op_count (int): The total number of operations in all optimized graphs.
        break_reasons (list): A list of graph break reasons with stack traces.

    Example Usage:
        def fn(x):
            x = torch.sigmoid(x)
            return x

        torch._dynamo.reset()
        eb = ExplainWithBackend("inductor")
        optimized_fn = torch.compile(fn, backend=eb)
        result = optimized_fn(torch.randn(5))
        print(eb.output())
    c                 C   s,   ddl m} ||| _g | _d| _g | _d S )Nr	   )lookup_backendr   )registryrg   backendrH   rL   rK   )rT   ri   rg   r   r   r   __init__  s
    
zExplainWithBackend.__init__r   c                 C   s2   t || j| jg | j\}| _| _}| _| ||S r   )re   rH   rL   rK   ri   )rT   r   r(   _r   r   r   __call__  s        zExplainWithBackend.__call__)returnc                 C   s(   t | j}t| j||d | j| j}|S )Nr	   )rd   rH   rG   rK   rL   )rT   rI   rU   r   r   r   rU     s    
zExplainWithBackend.outputN)r4   r5   r6   r\   rj   r   r   r]   rl   rG   rU   r   r   r   r   rf      s   rf   )*dataclasses	functools	importlibr   typingr   r   r   Zfunctorch.compiler   r   r   Ztorch._functorch.compilersr   commonr
   rh   r   Zregister_backendr   r   r!   r%   r)   r,   r-   partialr0   r1   	Exceptionr2   r7   r   r]   r>   r@   rB   rF   	dataclassrG   re   rf   r   r   r   r   <module>   st   




 
   
	
1