import abc
import copy
from collections import defaultdict
from typing import Any, Dict, Optional, Set, Tuple, List, Type

import torch
from torch import nn
from torch.nn.utils import parametrize
from torch.nn.utils.parametrize import type_before_parametrizations

from .utils import (
    module_contains_param,
    swap_module,
    FakeSparsity,
    get_arg_info_from_tensor_fqn,
    module_to_fqn,
)

__all__ = ["BaseSparsifier"]

SUPPORTED_MODULES = {nn.Linear}

KEYS_NOT_IN_STATE_DICT = ["module", "module_fqn", "tensor_name"]

__all__ = ["BaseSparsifier"]


# TODO update desc with new config args
class BaseSparsifier(abc.ABC):
    r"""Base class for all sparsifiers.

    Abstract methods that need to be implemented:

    - update_mask: Function to compute a new mask for all keys in the
        `groups`.

    Args:
        - model [nn.Module]: model to configure. The model itself is not saved
            but used for the state_dict saving / loading.
        - config [list]: configuration elements should be a dict map that includes
            `tensor_fqn` of tensors to sparsify
        - defaults [dict]: default configurations will be attached to the
            configuration. Only the keys that don't exist in the `config` will
            be updated.

    Example::

        >>> # xdoctest: +SKIP("Can't instantiate abstract class BaseSparsifier with abstract method update_mask")
        >>> config = [{'tensor_fqn': 'layer1.weight', 'tensor_fqn': 'linear2.weight2', 'sparsity_level': 0.5}]
        >>> defaults = {'sparsity_level': 0.7}
        >>> # model.layer1.weight will have `sparsity_level` = 0.7 (getting default)
        >>> sparsifier = BaseSparsifier(config, defaults)
    """

    def __init__(self, defaults: Optional[Dict[str, Any]] = None):
        super().__init__()
        self.defaults: Dict[str, Any] = defaults or {}

        self.state: Dict[str, Dict] = defaultdict(dict)
        self.groups: List[Dict[str, Any]] = []
        self.enable_mask_update = True

    def __getstate__(self) -> Dict[str, Any]:
        return {
            "defaults": self.defaults,
            "state": self.state,
            "groups": self.groups,
        }

    def __setstate__(self, state: Dict[str, Dict[str, Any]]) -> None:
        self.__dict__.update(state)

    def __repr__(self):
        format_string = self.__class__.__name__ + " ("
        for i, sparse_args in enumerate(self.groups):
            module = sparse_args["module"]
            format_string += "\n"
            format_string += f"\tGroup {i}\n"
            format_string += f"\t    module: {module}\n"
            for key in sorted(sparse_args.keys()):
                if key == "module":
                    continue
                format_string += f"\t    {key}: {sparse_args[key]}\n"
        format_string += ")"
        return format_string

    def state_dict(self) -> Dict[str, Any]:
        r"""Returns the state of the optimizer as a :class:`dict`.

        It contains:
        * state - current state of the sparsification.
        * groups - a list containing all sparsity configuration groups
            with the key 'tensor_fqn' specifying the path to the sparsified tensor within a model

        TODO: Need a clean way of loading the state of the "prepared" module
        """

        groups: List[Dict[str, Any]] = [
            dict(
                filter(
                    lambda key_value: key_value[0] not in KEYS_NOT_IN_STATE_DICT,
                    mg.items(),
                )
            )
            for mg in self.groups
        ]

        return {
            "state": self.state,
            "groups": groups,
        }

    def load_state_dict(self, state_dict: Dict[str, Any], strict: bool = True):
        groups = copy.deepcopy(state_dict["groups"])
        states = state_dict["state"]
        for tensor_fqn, s in states.items():
            arg_info = get_arg_info_from_tensor_fqn(self.model, tensor_fqn)
            module = arg_info["module"]
            tensor_name = arg_info["tensor_name"]
            if strict and module is None:
                raise RuntimeError(f"Error loading {tensor_fqn} into the model")

            found = False
            for p in module.parametrizations[tensor_name]:
                if isinstance(p, FakeSparsity):
                    found = True
                    break
            if not found:
                p = FakeSparsity(torch.ones(getattr(module, tensor_name).shape))
                parametrize.register_parametrization(module, tensor_name, p)
            if s.get("mask", None) is not None:
                mask = s.pop("mask")
                p.mask = mask

            for mg in groups:
                if mg["tensor_fqn"] == tensor_fqn:
                    mg.update(arg_info)
        self.__setstate__({"state": states, "groups": groups})

    def make_config_from_model(
        self,
        model: nn.Module,
        SUPPORTED_MODULES: Set[Type] = SUPPORTED_MODULES,
    ) -> None:
        self.config = []
        stack = [model]
        while stack:
            module = stack.pop()
            for name, child in module.named_children():
                if type(child) in SUPPORTED_MODULES:
                    module_fqn = module_to_fqn(model, child)
                    assert isinstance(module_fqn, str)  # for mypy
                    self.config.append({"tensor_fqn": module_fqn + ".weight"})
                else:
                    stack.append(child)

    def prepare(self, model, config):
        r"""Prepares a model, by adding the parametrizations.

        Note::

            The model is modified inplace. If you need to preserve the original
            model, use copy.deepcopy.
        """
        self.model = model  # TODO: Need to figure out how to load without this.
        self.config = config

        # If no config -- try getting all the supported layers
        if self.config is None:
            self.make_config_from_model(model)

        # TODO: Remove the configuration by reference ('module')
        for module_config in self.config:
            assert isinstance(module_config, dict), (
                "config elements should be dicts not modules i.e.:"
                "[{`tensor_fqn`: `foo.bar.weight`}, {`tensor_fqn`: ... }, ...]"
            )

            assert isinstance(self.defaults, Dict)  # for mypy
            local_args = copy.deepcopy(self.defaults)
            local_args.update(module_config)

            tensor_fqn = local_args.get("tensor_fqn", None)
            assert tensor_fqn is not None, (
                "tensor_fqn is a required argument in the sparsity config which"
                "replaces previous `module` and [module]`fqn` arguments"
            )

            # populate all information from tensor_fqn
            info_from_tensor_fqn = get_arg_info_from_tensor_fqn(model, tensor_fqn)

            # check that whatever was put into local_args agrees with what was obtained
            # from tensor_fqn
            for key in info_from_tensor_fqn.keys():
                if key in local_args:
                    assert (
                        info_from_tensor_fqn[key] == local_args[key]
                        or (
                            key == "tensor_fqn"
                            and "." + info_from_tensor_fqn[key] == local_args[key]
                        )
                        # info_from_tensor_fqn will chop leading '.' from tensor_fqn so ignore that
                    ), (
                        f"Given both `{key}` and `tensor_fqn` in the config, it is expected them to agree!"
                    )
            local_args.update(info_from_tensor_fqn)
            self.groups.append(local_args)
        self._prepare()

    def _prepare(self, *args, **kwargs):
        r"""Adds mask parametrization to the layer weight"""
        for config in self.groups:
            module = config["module"]
            tensor_name = config["tensor_name"]
            parametrization = config.get("parametrization", FakeSparsity)
            mask = config.get("mask", torch.ones_like(getattr(module, tensor_name)))
            self.state[config["tensor_fqn"]]["mask"] = mask
            parametrize.register_parametrization(
                module, tensor_name, parametrization(mask)
            )

    def squash_mask(
        self,
        params_to_keep: Optional[Tuple[str, ...]] = None,
        params_to_keep_per_layer: Optional[Dict[str, Tuple[str, ...]]] = None,
        *args,
        **kwargs,
    ):
        r"""Squashes the sparse masks into the appropriate tensors.

        If either the `params_to_keep` or `params_to_keep_per_layer` is set,
        the module will have a `sparse_params` dict attached to it.

        Args:
            params_to_keep: List of keys to save in the module or a dict
                            representing the modules and keys that will have
                            sparsity parameters saved
            params_to_keep_per_layer: Dict to specify the params that should be
                            saved for specific layers. The keys in the dict
                            should be the module fqn, while the values should
                            be a list of strings with the names of the variables
                            to save in the `sparse_params`

        Examples:
            >>> # xdoctest: +SKIP("locals are undefined")
            >>> # Don't save any sparse params
            >>> sparsifier.squash_mask()
            >>> hasattr(model.submodule1, 'sparse_params')
            False

            >>> # Keep sparse params per layer
            >>> sparsifier.squash_mask(
            ...     params_to_keep_per_layer={
            ...         'submodule1.linear1': ('foo', 'bar'),
            ...         'submodule2.linear42': ('baz',)
            ...     })
            >>> print(model.submodule1.linear1.sparse_params)
            {'foo': 42, 'bar': 24}
            >>> print(model.submodule2.linear42.sparse_params)
            {'baz': 0.1}

            >>> # Keep sparse params for all layers
            >>> sparsifier.squash_mask(params_to_keep=('foo', 'bar'))
            >>> print(model.submodule1.linear1.sparse_params)
            {'foo': 42, 'bar': 24}
            >>> print(model.submodule2.linear42.sparse_params)
            {'foo': 42, 'bar': 24}

            >>> # Keep some sparse params for all layers, and specific ones for
            >>> # some other layers
            >>> sparsifier.squash_mask(
            ...     params_to_keep=('foo', 'bar'),
            ...     params_to_keep_per_layer={
            ...         'submodule2.linear42': ('baz',)
            ...     })
            >>> print(model.submodule1.linear1.sparse_params)
            {'foo': 42, 'bar': 24}
            >>> print(model.submodule2.linear42.sparse_params)
            {'foo': 42, 'bar': 24, 'baz': 0.1}
        """
        for config in self.groups:
            module = config["module"]
            tensor_name = config["tensor_name"]
            parametrize.remove_parametrizations(
                module, tensor_name, leave_parametrized=True
            )
            sparse_params = {}
            if params_to_keep is not None:
                global_params = {k: config[k] for k in params_to_keep}
                sparse_params.update(global_params)
            if params_to_keep_per_layer is not None:
                params = params_to_keep_per_layer.get(config["module_fqn"], None)
                if params is not None:
                    per_layer_params = {k: config[k] for k in params}
                    sparse_params.update(per_layer_params)
            if sparse_params:
                # TODO handle multiple tensor being quantized on a single module, where to store sparse_params?
                module.sparse_params = sparse_params

    def convert(
        self,
        module: nn.Module,
        mapping: Optional[Dict[Type[nn.Module], Type[nn.Module]]] = None,
        inplace: bool = False,
        parameterization: Type[nn.Module] = FakeSparsity,
    ):
        r"""Converts submodules in input module to a different module according to `mapping`
        by calling `from_dense` method on the target module class
        Args:
            module: input module
            mapping: a dictionary that maps from source module type to target
                module type, can be overwritten to allow swapping user defined
                Modules
            inplace: carry out model transformations in-place, the original module
                is mutated
        """
        if mapping is None:
            raise NotImplementedError("Need to auto generate mapping ")
        if not inplace:
            module = copy.deepcopy(module)

        reassign = {}
        for name, mod in module.named_children():
            # leaf node
            if (
                module_contains_param(mod, parameterization)
                and type_before_parametrizations(mod) in mapping
            ):
                reassign[name] = swap_module(mod, mapping)
            else:
                # recurse
                reassign[name] = self.convert(
                    mod,
                    mapping=mapping,
                    inplace=True,
                    parameterization=parameterization,
                )

        for key, value in reassign.items():
            module._modules[key] = value

        return module

    def step(self, use_path: bool = True) -> None:
        if not self.enable_mask_update:
            return
        with torch.no_grad():
            for config in self.groups:
                self.update_mask(**config)

    @abc.abstractmethod
    def update_mask(self, module: nn.Module, tensor_name: str, **kwargs):
        pass
