U
    ,-ex                 4  @   s  d Z ddlmZ ddlmZ ddlmZmZmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZmZmZmZmZmZ eeZg g g dgg g g ddd	d
ddddddddddddddgdddddddd d!d"g
g g g g g g g d#gd$d%gg d&d'd(gd)gg g d*d+d,d-d.d/d0d1d2g	d3gd4d5d6d7d8d9d:gg d;d<gd=d>d?d@dAgdBdCdDdEdFgdGdHgdIdJdKdLdMdNdOdPdQdRdSdTgdUdVgdWdXdYdZd[gd\d]gg g d^d_gd`dadbdcddgdegdfdgdhgdigdjdkgdldmgdndodpgdqdrgdsdtdugdvdwdxgdydzd{d|d}gd~ddddgddgdddddgdddgdgddgdddgdddddgdddddgddddddgdddddgg dddgddgdddgddgddgg dddgdddgddgdddddgdddgddgddgddgddgg g ddddgdgddgdddgdgddgddgddgddgg ddgddgdddgg dddgddddddgddgddgddgdddgdddgdgddgddgd ddgddgdddgdd	d
dddgddgddgdddgdddgddddgddgddd gd!d"gd#d$gd%d&gd'd(gg d)d*gd+d,d-gd.d/gd0d1d2d3gd4gd5d6gd7d8gd9d:gd;d<gd=d>gd?d@dAdBdCgdDdEdFdGdHgdIdJdKgdLdMdNdOdPdQgdRdSdTdUdVdWgdXgdYdZd[gd\d]gd^d_gd`dagdbdcddgdedfgdgdhdigdjdkdlgdmdngdogdpdqdrdsdtgdudvgdwdxdygdzgg d{d|gd}d~gg ddddgddgg dddgddgddgddgddgdddgddgddgdgdddgddgddgddgg ddgdgddgdddgdddgdgdddddgdddgddgdddgddgdgdddddgddgdĐdgdƐdgdȐdɐdgdːdgd͐dgdϐdАdgdҐdӐdgdՐdgdאdgdِdgdېdgdݐdސdgddgdddgdddgddgddddddgddgddgddgdgdddgddddgddd dddgdddgddd	gd
dgddgddgddgddgddgddgdddgddgddgdgd d!d"d#gd$d%d&gd'd(d)d*gd+gd,d-gd.d/gd0gd1d2gd3d4d5d6d7gd8gd9d:gd;d<gd=d>gd?d@gdAdBgdCdDgdEdFgdGdHgdIdJdKgdLdMgdNdOdPdQdRdSgdTdUgdVgdWgdXdYgdZd[d\d]d^gd_d`dadbdcgdddegdfdgdhgdidjgdkdlgdmdngdodpgdqdrgdsdtgdudvgg dwdxdydzd{d|d}d~dddddddddddddddddddddddddddg#dgg dgddddddgddddddddddg
dddddddgdddddgdgdgdgdddddddddÐdĐdŐdƐdǐdȐdɐdʐdːd̐d͐dΐdϐdАdѐdҐdӐdԐdՐd֐dאdؐdِdڐdېdܐdݐdސdߐdddg(ddgdZze s8e W nB ek
r|   ddlmZ dd eeD ed< Y nBX ed d ed d ed d ed d ed d ed d ed d ed d ed d ed d ed d ed  d ed d ed d ed d ed d	 ed
 d ed d ed d ed d ed d ed d ed d ed d ed d ed d ed d ed d  ed! d" ed# d$ ed% d& ed' d( ze se W nB ek
r   dd)lm Z  d*d ee D ed+< Y nX ed d, ed- d. ed d/ ed0 d1 ed d2 ed3 d4 ed5 d6 ed7 d8 ed d9 ed: d; ed d< ed= d> ed? d@ ed dA edB dC ed dD edE dF edG dH edI !dJdKdLg edM dN ed dO edP dQ edR dS edT dU edV dW edX dY edZ d[ ed\ d] ed^ d_ ed d` eda db ed dc edd de edf dg edh di ed
 dj ed dk edl dm edn do ed dp edq dr ed ds edt du edv dw ed dx edy dz ed d{ ed d| ed} d~ ed d ed d ed d ed d ed d ed! d ed% d ed' d dged< ze r@e sFe W n@ ek
r   ddlm"Z" dd ee"D ed< Y nX ddged< ze se W n@ ek
r   ddlm#Z# dd ee#D ed< Y n&X ed d ed d ze s$e W n@ ek
rf   ddlm$Z$ dd ee$D ed< Y nX ed0 d ze se W n@ ek
r   ddlm%Z% dd ee%D ed< Y nX edR d ze se W nB ek
r4   ddlm&Z& dd ee&D ed< Y nX dged< dged< ed !ddg ed !dg ed !dg ed d ed !ddg ed: !ddg ed !ddg ed !ddg ed !ddg ed !ddg ed d¡ ed !dĐdg ed !dǐdg ed !dʐdg ed d͡ ed dϡ ed !dѐdҐdg ed !dՐdg ed !dg ed !dڐdg ed\ !dNdOg ed^ !dTdUg ed !dݐdg ed d ed !ddg ed !ddg ed !ddg ed !ddg edt d ed !dg ed !ddg ed !ddg ed !dg ed !ddg ed !dg ed !dg ed !d dg ed d ed d ed !ddg ed	 !d5d6d7g ed
 !ddg ed !dg ed d ed d ed !ddg ze s^e W nB ek
r   ddlm'Z' dd ee'D ed< Y #nxX g ed< dged< dged< ddd d!d"d#d$d%d&g	ed'< ed( !d)d*d+d,d-d.d/d0d1d2d3d4d5d6d7d8d9d:d;d<d=d>d?d@dAdBdCdDdEdFdGdHdIdJdKdLdMdNdOdPdQdRdSdTg, g edU< g edV< dWgedX< ed !dYdZd[d\d]d^d_d`dadbg
 edc !dddedfdgdhg edi !djdkdldmdng ed !dodpdqdrg eds !dtdudvdwdxdydzd{d|d}d~ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddgK ed !ddddg ed !dŐdƐdǐdȐdɐdʐdg ed- !d̐d͐dΐdϐdАdѐdҐdӐdg	 ed !dՐd֐dאdؐdِdg ed0 !dېdܐdݐdސdߐddddddddg ed !ddddg ed !ddddddddddddg ed !dddddddg ed  !ddddddg ed !ddd	d
dg ed3 !dddddg ed5 !dddddg ed !ddddddddg ed !dd d!d"d#d$g ed7 !d%d&d'd(d)d*d+g ed !d,d-d.d/d0d1g ed2 !d3d4d5d6dd7d8g ed !d9d:d;d<d=d>d?d@dAg	 edB !dCdDdEdFdGdHdIdJdKg	 ed !dLdMdNdOdPg edQ !ddRdSdTdUdVdWdXg ed: !dYdZd[d\d]d^d_g ed` !dadbdcdddedfg ed= !dgdhdidjg ed !dkdldmdndog ed? !dpdqdrdsdtdudvdwdxdyg
 ed !dzd{d|d}d~g ed !dddddg ed !ddddg ed !dddddg ed !ddddg ed !dddddddddddddddddddddg edB !dddddddg ed !ddddddddg ed !dddddg ed !ddddg ed !dĐdŐdƐdǐdȐdg ed !dːd̐d͐dg ed !dАdѐdg ed !dԐdՐd֐dg edE !dؐdِdg ed !dܐdݐdg ed !ddddg ed !ddddg ed !dddddg ed !dddddg ed !dddddg edG !dddddddd g ed !dddg edI !dddddd	d
dddg
 ed !dddddg ed !dddddg ed !ddddg edM !ddddd d!d"d#d$d%d&g ed' !d(d)d*g ed+ d, ed- !d.d/d0d1d2d3d4d5d6d7d8g ed !d9d:d;d<d=d>d?d@g edA !dBdCdDdEdFdGdHdIg edJ !dKdLdMdNdOdPdQg edR !dSdTdUdVdWdXdYdZd[g	 ed !d\d]d^d_d`dadbdcg ed !dddedfdgdhdidjdkdldmdng edo !dpdqdrdsdtdug edv !dwdxdyg edP !dzd{d|d}d~ddddddg ed !dddddg ed !ddddg edR !dddddddddg	 ed !ddddddg ed !ddddddddg edT !ddddddddg edV !dddddg ed !ddddddg ed !ddddg ed !ddÐdĐdg ed !dǐdȐdɐdʐdg ed !d͐dΐdϐdАdg ed !dӐdԐdՐd֐dאdؐdِdg ed !dېdܐdݐdސdg ed !ddddddg ed !ddddg ed !dddddg ed !dddddg edZ !dddddddg ed\ !ddd dddg ed^ !dddddd	g eda !d
dddddg ed !dddddg ed !ddddddg ed !ddddg edd !d d!d"d#d$d%d&d'd(g	 ed) !d*d+d,d-d.g ed/ !d0d1d2d3d4d5d6d7d8d9d:g edf !d;d<d=d>d?d@dAg ed !dBdCdDdEg ed !dFdGdHg edh !dIdJdKdLdMdNg ed !dOdPdQdRg ed !dSdTdUdVdWg ed
 !dXdYdZd[d\d]g ed^ !d_d`dadbdcdddedfdgg	 edh !didjdkdldmdndodpdqdrdsg edt !dudvdwdxg edy !dzd{d|d}g edl !d~dddddddddddg ed !dddddg ed !ddddddg ed !dddddg ed !dddddg edn !dddddddddg	 ed !dddddddg ed !ddddddddg ed !ddddddg ed !dddÐdĐdŐdg edq !dǐdȐdɐdʐdːd̐dg ed !dϐdАdѐdҐdg ed !dՐd֐dאdؐdِdڐdېdܐdݐdg
 ed !ddddddg ed !dddddddddg	 ed !ddddg edv !dddddddg ed !ddddd dg ed !ddddddg ed !dd	d
dg ed !ddddg ed !dddddddddddg ed !dddd g ed !d!d"d#d$d%g ed !d&d'd(d)d*d+g ed !d,d-d.d/g ed0 !d1d2d3g ed4 !d5d6d7d8d9d:d;g ed !d<d=d>d?g ed@ !dAdBdCdDdEdFdGdHdIdJdKdLg edM !dNdOdPdQg edy !dRdSdTdUdVdWdXdYdZg	 ed !d[d\d]d^d_d`dadbdcg	 edd !dedfdgdhg ed !didjdkdldmdndodpdqdrdsg edt !dudvdwdxdyg ed} !dzd{d|d}d~ddddg	 ed !dddddddddg	 ed !ddddddddddddg ed !dddddddddddg ed !ddddg ed !dddg ed !dddddddg ed !dddddg ed !dddddg ed !dg ed !ddÐdĐdg ed !dǐdg ed !dɐdʐdːd̐d͐dΐdg ed !dАdѐdҐdӐdԐdg ed !d֐dאdؐdِdڐdېdܐdݐdg	 ed !ddddg ed !ddddddg ed !ddddg ed !dddddg ed !dddddddg ed !ddd	d 	d	d	d	dg e	d !	d	d	d	d	g e	d
 !	d	d	d	d	d	d	dg e	d !	d	d	d	dg e	d !	d	d	d	dg e	d !	dg e	d !	d	d 	d!	d"	d#	d$	d%g e	d& !	d'	d(	d)g ed !	d*	d+	d,	d-	d.g e	d/ !	d0	d1	d2	d3	d4	d5g e	d6 !	d7	d8	d9	d:	d;	d<g e	d= !	d>	d?	d@	dA	dB	dC	dD	dEg e	dF !	dG	dHg ed !	dI	dJ	dK	dL	dMg ed	 !	dN	dO	dP	dQ	dR	dS	dT	dU	dVg	 e	dW !	dXg e	dY !	dZg e	d[ !	d\	d]	d^	d_	d`	da	db	dc	ddg	 ed
 !	de	df	dg	dh	dig ed !	dj	dk	dl	dmg e	dn !	do	dp	dq	dr	dsg e	dt !	du	dv	dw	dxg e	dy !	dz	d{	d|	d}g ed !	d~	d	dg e	d !	d	d	dg ed !	d	d	d	dg e	d !	d	d	d	d	d	d	d	d	dg	 e	d !	d	d	d	d	d	d	d	dg e	d !	d	d	d	d	d	d	dg ed !	d	d	d	d	dg e	d !	d	d	d	d	dg ed! !	d	d	d	dg e	d !	d	d	d	d	d	d	d	d	dg	 ed# !	d	d	d	d	d	d	dg ed% !	dĐ	dŐ	dƐ	dǐ	dȐ	dɐ	dʐ	dː	dg	 e	d !	dΐ	dϐ	dА	dѐ	dҐ	dӐ	dԐ	dՐ	dg	 ed' !	dא	dؐ	dِ	dڐ	dې	dܐ	dݐ	dސ	dߐ	dg
 e	d !	d	d	d	d	d	d	d	d	dg	 ed !	d	d	d	dg e	d !	d	d	d	d	d	d	d	d	dg	 	d	d	d	d	d	d	d
d 
d
dg
e
d< 
d
d
dge
d< g e
d< g e
d	< 
d
ge
d< 
dge
d< 
dge
d< ze =s*e W nB ek
=rn   d
dlm(Z( 
dd ee(D e
d< Y nX g e
d< 
dge
d< 
dge
d< ed( !
d
d
d
d
d
d
d
d
d 
d!
d"
d#
d$
d%
d&
d'
d(g g e
d)< 
d*
d+ge
d,< g e
d-< 
d.
d/
d0
d1ge
d2< ed !
d3
d4
d5
d6
d7
d8
d9
d:
d;
d<g
 eds !
d=
d>
d?
d@
dA
dB
dC
dD
dE
dF
dG
dH
dI
dJ
dK
dL
dM
dN
dO
dP
dQ
dR
dS
dT
dU
dV
dW
dX
dY
dZ
d[
d\
d]
d^
d_
d`
da
db
dc
dd
de
df
dg
dhg, ed- !
di
dj
dk
dlg ed0 !
dm
dn
do
dp
dq
dr
ds
dt
du
dv
dw
dx
dyg ed3 !
dz
d{
d|g ed5 !
d}
d~
dg ed !
d
d
d
d
d
d
d
dg ed !
d
d
d
d
d
d
d
d
dg	 ed: !
d
d
d
d
dg ed? !
d
d
d
d
d
d
d
d
dg	 ed !
d
d
dg ed !
d
d
d
d
dg ed !
d
d
d
dg ed !
d
d
d
dg edB !
d
d
d
d
d
d
dg ed !
d
d
d
d
d
d
d
dg ed !
d
d
d
d
d
dg edG !
dĐ
dŐ
dƐ
dǐ
dȐ
dɐ
dʐ
dː
dg	 edI !
d͐
dΐ
dϐ
dА
dѐ
dҐ
dӐ
dԐ
dg	 ed !
d֐
dא
dؐ
dِ
dg edM !
dې
dܐ
dݐ
dސ
dߐ
d
d
d
dg	 ed+ 
d edA !dB
d
d
d
d
dg edR !
d
d
d
d
d
d
d
dg edP !
d
d
d
d
d
d
d
d
d
dg
 edR !
d
d
d
dd ddg ed !dddddg ed !dd	d
ddg ed !ddddg edZ !ddddddddg ed^ !ddddddg eda !dd d!g edd !d"d#d$d%d&d'd(d)d*g	 edf !d+d,d-d.d/d0g ed !d1d2d3g ed
 !d4d5d6g edl !d7d8d9d:d;d<d=d>d?d@dAg ed !dBdCdDdEdFg edn !dGdHdIdJdKdLdMdNdOg	 ed !dPdQdRg edv !dSdTdUdVdWdXdYg ed !dZd[d\g ed !d]d^d_g edM !d`dadbdcg edd !dddedfdgg ed !dhdidjdkdldmdndodpdqg
 edt !drdsdtdug ed} !dvdwdxdydzd{d|d}d~dg
 ed !ddddddddddg
 ed !ddddddddddg
 ed !dddg ed !ddddddg ed !ddddg ed !dddddg ed !dddddg e	d
 !ddddddg e	d !dddddddg e	dW !dg e	dY !dg ed
 !dddg e	dn !dddg e	d !ddddÐdg ed !dŐdƐdǐdg ed! !dɐdʐdːdg e	d !d͐dΐdϐdАdѐdҐdӐdԐdg	 ed% !d֐dאdؐdِdڐdېdܐdݐdg	 ed' !dߐddddddddg	 ddddged< g ed< dged< z2e Ire	 Ire Ire Ire Ise W n@ ek
Ir   ddlm)Z) dd ee)D ed< Y n8X ed0 d ed0 d ed0 d ze
 Jse W nB ek
Jr`   ddlm*Z* dd ee*D ed< Y nX ed( !dddddddd ddddddg g ed< g ed< d	ged
< ed !ddddddddg eds !dddddddddddddd d!d"d#d$d%d&d'd(d)d*d+d,d-g ed- !d.d/d0d1d2d3d4g ed !d5d6d7d8g ed0 !d9d:d;d<d=d>d?d@dAdBg
 ed !dCdDdEdFdGdHdIdJdKg	 ed3 !dLdMdNg ed5 !dOdPdQg ed7 !dRdSdTg ed: !dUdVdWdXdYdZd[g edG !d\d]d^d_d`dadbg edM !dcdddedfdgdhdidjdkg	 ed+ dl edR !dmdndog ed !dpdqdrg ed !dsdtdug ed) !dvdwdxg ed !dydzd{g ed
 !d|d}d~ddg ed !dddg ed !dddg ed !dddg edd !dddg edt !dddg ed} !ddddddddg ed !ddddddddg ed !dddddddg ed d ed !ddddg e	dW d e	dY !dg ed
 !dddg e	d !ddddg ed !ddddg ed! !dddg ed% !ddddddddÐdg	 erVddl+m,Z, ddl-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z:m;Z;m<Z<m=Z=m>Z>m?Z? ddl@mAZAmBZBmCZCmDZDmEZEmFZFmGZGmHZHmIZImJZJ ddlKmLZL ddlMmNZNmOZO ddlPmQZQmRZRmSZS ddlTmUZU ddlVmWZWmXZXmYZYmZZZm[Z[m\Z\m]Z]m^Z^m_Z_ ddl`maZa ddlbmcZcmdZdmeZemfZfmgZgmhZhmiZi ddljmkZkmlZl ddlmmnZnmoZompZpmqZqmrZr ddlsmtZtmuZumvZvmwZwmxZx ddlymzZzm{Z{ ddl|m}Z}m~Z~mZmZmZmZmZmZmZmZmZmZ ddlmZmZ ddlmZmZmZmZmZ ddlmZmZ ddlmZmZ ddlmZmZmZmZmZ ddlmZ ddlmZmZmZ ddlmZ ddlmZmZ ddlmZmZ ddlmZmZmZ ddlmZmZ ddlmZmZmZ ddlmZmZmZ ddlmZmZmZmZmZ ddlmZmZmZmZmZ ddlmZmZ ddlmZmZmZmZmZ ddlmZmZmZ ddlmZ ddlmZmZ ddlmZmZmZ ddlmZmZmZmZmZ ddlmZmZmZmZmZ ddlmZmZmZmZmZmZ ddlmZmZmZmZmZ ddlmZmZmZ ddlmZmZ ddlmZmZm Z  ddlmZmZ ddlmZmZ ddlmZm	Z	m
Z
 ddlmZmZmZ ddlmZmZ ddlmZmZmZmZmZ ddlmZmZmZ ddlmZmZ ddlm Z m!Z! ddl"m#Z#m$Z$ ddl%m&Z&m'Z' ddl(m)Z)m*Z*m+Z+m,Z, ddl-m.Z. ddl/m0Z0m1Z1 ddl2m3Z3m4Z4m5Z5 dd l6m7Z7 ddl8m9Z9m:Z: ddl;m<Z<m=Z= ddl>m?Z?m@Z@ ddlAmBZBmCZC ddlDmEZEmFZF ddlGmHZHmIZI ddlJmKZKmLZLmMZM ddlNmOZOmPZPmQZQ dd	lRmSZSmTZTmUZUmVZVmWZWmXZX dd
lYmZZZm[Z[ ddl\m]Z]m^Z^ ddl_m`Z`maZa ddlbmcZcmdZdmeZe ddlfmgZgmhZhmiZi ddljmkZk ddllmmZmmnZn ddlompZpmqZq ddlrmsZsmtZtmuZu ddlvmwZwmxZx ddlymzZzm{Z{m|Z| ddl}m~Z~mZmZmZmZmZ ddlmZmZ ddlmZmZ ddlmZmZmZ ddlmZmZmZ ddlmZmZmZmZ ddlmZmZ ddlmZmZmZ ddlmZmZ ddlmZmZ ddlmZmZ dd lmZmZ dd!lmZmZ dd"lmZmZmZ dd#lmZmZ dd$lmZmZmZmZ dd%lmZ dd&lmZmZ dd'lmZmZ dd(lmZmÐZ dd)lĐmŐZŐmƐZ dd*lǐmȐZȐmɐZ dd+lʐmːZːm̐Z̐m͐Z͐mΐZΐmϐZ dd,lАmѐZѐmҐZҐmӐZӐmԐZԐmՐZ dd-l֐mאZאmؐZؐmِZ dd.lڐmېZېmܐZܐmݐZݐmސZސmߐZߐmZ dd/lmZmZmZmZmZmZ dd0lmZ dd1lmZmZmZ dd2lmZmZ dd3lmZmZ dd4lmZmZ dd5lmZmZmZ dd6lmZmZ dd7lmZm Z mZ dd8lmZmZmZ dd9lmZmZ dd:l	m
Z
 dd;lmZmZmZmZmZ dd<lmZmZ dd=lmZmZmZ dd>lmZ dd?lmZmZ dd@lmZmZ ddAl m!Z!m"Z"m#Z#m$Z$ ddBl%m&Z&m'Z' ddCl(m)Z)m*Z*m+Z+ ddDl,m-Z-m.Z. ddEl/m0Z0m1Z1 ddFl2m3Z3m4Z4 ddGl5m6Z6m7Z7 ddHl8m9Z9m:Z:m;Z; ddIl<m=Z=m>Z> ddJl?m@Z@mAZA ddKlBmCZC ddLlDmEZEmFZFmGZG ddMlHmIZImJZJ ddNlKmLZLmMZM ddOlNmOZOmPZP ddPlQmRZRmSZS ddQlTmUZU ddRlVmWZWmXZX ddSlYmZZZm[Z[m\Z\ ddTl]m^Z^m_Z_m`Z` ddUlambZb ddVlcmdZdmeZemfZfmgZgmhZh ddWlimjZjmkZkmlZl ddXlmmnZnmoZo ddYlpmqZqmrZrmsZs ddZltmuZumvZv dd[lwmxZx dd\lymzZzm{Z{m|Z|m}Z}m~Z~ dd]lmZmZ dd^lmZmZ dd_lmZmZ dd`lmZmZmZ ddalmZmZ ddblmZmZ ddclmZmZmZ dddlmZmZmZ ddelmZmZ ddflmZmZ ddglmZmZ ddhlmZmZ ddilmZmZmZ ddjlmZmZ ddklmZmZmZ ddllmZmZmZ ddmlmZmZ ddnlmZmZmZmZmZmZ ddolmZmZ ddplmÐZÐmĐZ ddqlŐmƐZƐmǐZ ddrlȐmɐZ ddslʐmːZːm̐Z̐m͐Z ddtlΐmϐZϐmАZАmѐZѐmҐZ ddulӐmԐZԐmՐZՐm֐Z֐mאZאmؐZؐmِZ ddvlڐmېZېmܐZܐmݐZ ddwlސmߐZߐmZmZ ddxlmZmZ ddylmZmZ ddzlmZmZ dd{lmZmZ dd|lmZmZ dd}lmZmZ dd~lmZmZ ddlmZmZmZ ddlmZmZ ddlmZm Z  ddlmZ ddlmZmZmZmZ ddlm	Z	m
Z
mZ ddlmZmZmZmZ ddlmZ ddlmZmZ ddlmZmZ ddlmZ ddlmZmZ ddlmZm Z m!Z!m"Z"m#Z# ddl$m%Z% ddl&m'Z'm(Z( ddl)m*Z*m+Z+ ddl,m-Z-m.Z. ddl/m0Z0m1Z1 ddl2m3Z3m4Z4 ddl5m6Z6m7Z7 ddl8m9Z9m:Z: ddl;m<Z<m=Z= ddl>m?Z?m@Z@mAZA ddlBmCZCmDZD ddlEmFZFmGZGmHZHmIZImJZJmKZK ddlLmMZMmNZN ddlOmPZP ddlQmRZR ddlSmTZTmUZU ddlVmWZWmXZXmYZYmZZZm[Z[ ddl\m]Z]m^Z^m_Z_m`Z`maZa ddlbmcZcmdZd ddlemfZfmgZgmhZh ddlimjZjmkZk ddllmmZmmnZn ddlompZpmqZq ddlrmsZsmtZt ddlumvZvmwZw ddlxmyZymzZz ddl{m|Z|m}Z} ddl~mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZ ddlmZ ddlmZ ddlmZmZmZmZmZmZ ddlmZmZmZmZmZmZmZmZmZmZ ddlmZmZmZmZmZmZmZ ddlmZmZmÐZÐmĐZĐmŐZ ddlƐmǐZ ddlȐmɐZ ddlʐmːZ ddlm̐Z̐m͐Z͐mΐZΐmϐZϐmАZАmѐZѐmҐZҐmӐZӐmԐZԐmՐZՐm֐Z֐mאZאmؐZmZmِZِmڐZڐmېZm
Z
mZmܐZܐmݐZݐmސZސmߐZߐmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZ ddlmZmZ ze nse W n$ ek
or   ddlT Y nnX ddljmZ ddlmZ ddlmZ ddlmZ ddlmZ ddl֐mZ ddlmZ ddlmZ ddlmZ ddlomZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddÐl	mZ ddĐlmZm Z  ddŐlmZ ddƐlBmZ ddǐlmZ ddȐlimlZl ddɐlmZ ddʐlmZ ddːlmZ dd̐lʐm	Z	 dd͐lӐm
Z
 ddΐlmZ ddϐlbmZ ddАlimZ ddѐllmZ ddҐlrmZ ze qse W n$ ek
qr   ddlT Y nX ddljmZ ddlmZ ddՐlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlǐmZ ddl֐mZ ddlmZ ddݐlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlm Z  ddl2m!Z! ddlJm"Z" ddlRm#Z#m$Z$m%Z% ddlbm&Z& ddlm'Z' ddlm(Z( ddlm)Z) ddlm*Z* ddlm+Z+ ddlm,Z, ddl֐m-Z- ddlڐm.Z. ddlm/Z/ ddlm0Z0 ddlm1Z1 ddlm2Z2 ddlm3Z3 ddlm4Z4 ddlm5Z5 ddlm6Z6 ddl7m8Z8 ddl(m9Z9 ddl8m:Z: ddlBm;Z; ddlHm<Z< ddlm=Z= ddlTm>Z> ddl]m?Z? ddlim@Z@ dd lmAZA ddlmBZB ddlmCZC ddlmDZD ddlmEZE ddlڐmFZF ddlސmGZG ddlmHZH ddlVmIZI dd	lbmJZJ dd
llmKZK ddlrmLZL ddlMmNZN ze vrNe vsTe W n" ek
vrx   ddlOT Y nX ddlPmQZQmPZP ze vse W n" ek
vr   ddlRT Y n(X ddlymSZS ddlʐmTZT ze wse W n" ek
wr&   ddlUT Y nX ddlmVZV ze wsJe W n" ek
wrn   ddlWT Y nX ddlmXZX ze wse W n$ ek
wr   ddlYT Y nX ddlZm[Z[ ddl\m]Z] ddlm^Z^m_Z_ ddlm`Z` ddlmaZa ddlʐmbZb ddlݐmcZcmdZd ddlmeZemfZf ddlmgZgmhZh ddlmiZimjZj ddl"mkZkmlZl ddl%mmZmmnZn ddl>moZo ddlAmpZpmqZq dd lNmrZrmsZs dd!lYmtZtmuZu dd"l\mvZv dd#l_mwZw dd$l}mxZxmyZymzZz dd%lm{Z{m|Z| dd&lm}Z} dd'lĐm~Z~mZ dd(lڐmݐZݐmސZ dd)lmZmZ dd*lmZmZ dd+lmZ dd,lmZmZ dd-l,mZmZ dd.l/mZmZ dd/l2mZmZ dd0lTmZ dd1lYmZ dd2lcmZmZ dd3lpmZmZ dd4lymZ dd5lmZmZ dd6lmZ dd7lmZ dd8lmZmZ dd9lmZ dd:lmZ dd;lmZmZ dd<lm!Z!m"Z"m#Z# dd=l,mZmZ dd>l/mZ dd?l;mZ dd@lBmZ ddAlxmZmZ ze |sne W n$ ek
|r   ddlT Y 5nX ddBlmZ ddClmZ ddDlmZmZmZmZmZmZmZmZmZ ddElPmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmÐZÐmĐZĐmŐZŐmƐZƐmǐZǐmȐZȐmɐZɐmʐZʐmːZːm̐Z̐m͐Z͐mΐZΐmϐZϐmАZАmѐZѐmҐZҐmӐZӐmԐZԐmՐZՐm֐Z֐mאZאmؐZؐmِZِmڐZڐmېZېmܐZܐmݐZ ddFlސmߐZ ddGljmZmZmZmZmZmZmZmZmZmZ ddHlmmZmZmZmZmZ ddIlsmZmZmZmZmZ ddJlymZmZmZmZ ddKl|mZmZmZmZmZmZmZmZm Z mZmZmZmZmZmZmZmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZm Z m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z:m;Z;m<Z<m=Z=m>Z>m?Z?m@Z@mAZAmBZB ddLlmCZCmDZDmEZEmFZF ddMlmGZGmHZHmIZImJZJmKZKmLZLmMZM ddNlmNZNmOZOmPZPmQZQmRZRmSZSmTZTmUZUmVZV ddOlmWZWmXZXmYZYmZZZm[Z[m\Z\ ddPlm]Z]m^Z^m_Z_m`Z`maZambZbmcZcmdZdmeZemfZfmgZgmhZhmiZi ddQlmjZjmkZkmlZlmmZm ddRlmnZnmoZompZpmqZqmrZrmsZsmtZtmuZumvZvmwZwmxZxmyZy ddSlmzZzm{Z{m|Z|m}Z}m~Z~mZmZ ddTlmZmZmZmZmZmZ ddUlmZmZmZmZmZ ddVlmZmZmZmZmZ ddWlmZmZmZmZmZ ddXlmZmZmZmZmZmZmZmZ ddYlmZmZmZmZmZmZ ddZlǐmZmZmZmZmZmZmZ dd[lʐmZmZmZmZmZmZ dd\lАmZmZmZmZmZӐmZmZ dd]l֐mZmZmZmZmZmZmZmZmZ dd^lِmZmZmZmÐZÐmĐZĐmŐZŐmƐZƐmǐZǐmȐZ dd_lݐmɐZɐmʐZʐmːZːm̐Z̐m͐Z dd`lmZmΐZΐmϐZϐmАZАmѐZѐmҐZҐmӐZӐmԐZ ddalmՐZՐm֐Z֐mאZאmؐZؐmِZِmڐZڐmېZ ddblmܐZܐmݐZݐmސZސmߐZߐmZmZ ddclmZmZmZmZ dddlmZmZmZmZmZ ddelmZmZmZmZmZmZmZmZmZmZ ddflmZmZmZmZmZ ddglmZmZmZmZmZ ddhlmZm Z mZmZ ddilmZmZmZmZmZ ddjlmZm	Z	m
Z
mZ ddklmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZm Z  ddllm!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z' ddmlm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/Z/ ddnlm0Z0m1Z1m2Z2m3Z3m4Z4 ddol"m5Z5m6Z6m7Z7m8Z8 ddpl%m9Z9m:Z:m;Z;m<Z<m=Z=m>Z> ddql(m?Z?m@Z@mAZAmBZB ddrl-mCZCmDZDmEZE ddsl/mFZFmGZGmHZHmIZI ddtl2mJZJmKZKmLZL ddul8mMZMmNZNmOZO ddvl;mPZPmQZQmRZRmSZS ddwl>mTZTmUZUmVZVmWZW ddxlAmXZXmYZYmZZZm[Z[m\Z\ ddylDm]Z]m^Z^m_Z_m`Z`maZa ddzlGmbZbmcZcmdZdmeZemfZf dd{lJmgZgmhZhmiZimjZjmkZkmlZlmmZmmnZn dd|lNmoZompZpmqZq dd}lRmrZrmsZsmtZtmuZumvZvmwZwmxZxmyZymzZzm{Z{ dd~lYm|Z|m}Z}m~Z~mZmZ ddl\mZmZmZmZmZ ddl_mZmZmZmZ ddlbmZmZmZmZmZmZmZmZmZmZmZ ddlfmZmZmZ ddljmZ ddllmZmZmZmZmZmZmZmZmZmZmZ ddlomZmZmZmZmZmZmZmZ ddlrmZmZmZmZmZmZmZmZ ddlvmZmZmZmZmZmZmZ ddlymZmZmZmZmZmZmZmZmÐZ ddl}mĐZĐmŐZŐmƐZƐmǐZǐmȐZȐmɐZɐmʐZʐmːZ ddlm̐Z̐m͐Z͐mΐZΐmϐZϐmАZАmѐZѐmҐZҐmӐZӐmԐZԐmՐZՐm֐Z ddlmאZאmؐZؐmِZِmڐZڐmېZېmܐZ ddlmݐZݐmސZސmߐZ ddlmZmZmZmZmZmZmZmZmZmZmZ ddlmZmZmZmZmZ ddlmZmZmZmZ ddlmZmZmZmZmZmZmZmZmZ ddlmZmZmZm Z mZmZ ddlmZmZmZmZmZmZm	Z	m
Z
 ddlmZmZmZmZmZmZmZmZ ddlmZmZmZmZmZ ddlmZmZmZmZmZmZ ddlmZmZm Z m!Z! ddlm"Z"m#Z#m$Z$m%Z% ddlm&Z&m'Z'm(Z(m)Z)m*Z* ddlm+Z+m,Z,m-Z-m.Z.m/Z/ ddlm0Z0m1Z1m2Z2m3Z3m4Z4m5Z5m6Z6m7Z7 ddlm8Z8m9Z9m:Z:m;Z;m<Z< ddlĐm=Z=m>Z>m?Z?m@Z@mAZAmBZB ddlǐmCZCmDZDmEZEmFZF ddlʐmGZGmHZHmIZImJZJmKZK ddlАmLZLmMZMmNZNmOZOmPZP ddl֐mQZQmRZRmSZSmTZTmUZUmVZVmWZW ddlڐmXZXmYZYmZZZm[Z[m\Z\m]Z] ddlm^Z^m_Z_m`Z`maZambZbmcZc ddlmdZdmeZemfZfmgZgmhZhmiZi ddlmjZjmkZkmlZlmmZmmnZn ddlmoZompZpmqZqmrZrmsZsmtZt ddlmuZumvZvmwZwmxZx ddlmyZymzZzm{Z{m|Z|m}Z}m~Z~mZmZmZ ddlmZmZmZmZmZ ddlmZmZmZmZmZmZmZmZmZmZmZ ddlmZmZmZmZmZmZmZ ddlmZmZmZmZ ddl	mZmZmZ ddlmZmZmZmZmZmZ ddlmZmZmZmZ ddlmZmZmZmZmZ ddlmZmZmZmZmZmZ ddlmZmZmZmZmZmZmZmZmZ ddlmZmZmZmZmZmÐZÐmĐZĐmŐZŐmƐZƐmǐZǐmȐZ ddl mɐZɐmʐZʐmːZːm̐Z ddl%m͐Z͐mΐZΐmϐZϐmАZ ddl(mѐZѐmҐZҐmӐZӐmԐZԐmՐZՐm֐Z֐mאZאmؐZؐmِZِmڐZڐmېZېmܐZ ddl,mݐZݐmސZސmߐZߐmZmZ ddl/mZmZmZmZmZmZ ddl2mZmZmZmZmZ ddl5mZmZmZmZmZ ddl8mZmZmZmZmZmZmZmZmZ ddl<mZmZmZmZmZm Z mZ ddl?mZmZmZmZmZmZmZm	Z	 ddlBm
Z
mZmZmZmZmZ ddlDmZmZmZmZmZmZ ddlHmZmZmZmZmZmZmZ ddlKmZmZmZm Z m!Z! ddlNm"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z)m*Z*m+Z+ ddlQm,Z,m-Z-m.Z.m/Z/m0Z0m1Z1 ddÐlVm2Z2m3Z3m4Z4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z: ddĐlYm;Z;m<Z<m=Z=m>Z> ddŐl]m?Z?m@Z@mAZAmBZBmCZCmDZDmEZE ddƐlamFZFmGZGmHZHmIZImJZJmKZK ddǐlcmLZLmMZMmNZNmOZOmPZPmQZQ ddȐlimRZRmSZSmTZTmUZU ddɐlmmVZVmWZWmXZXmYZY ddʐlpmZZZm[Z[m\Z\m]Z]m^Z^m_Z_m`Z`maZambZbmcZcmdZd ddːltmeZemfZfmgZgmhZh dd̐lymiZimjZjmkZkmlZlmmZm dd͐lmnZnmoZompZpmqZqmrZrmsZs ddΐlmtZtmuZumvZvmwZw ddϐlmxZxmyZymzZz ddАlm{Z{m|Z|m}Z}m~Z~mZmZmZ ddѐlmZmZmZmZ ddҐlmZmZmZmZmZmZmZmZmZmZmZmZ ddӐlmZmZmZmZ ddԐlmZmZmZmZmZmZmZmZmZ ddՐlmZmZmZmZmZmZmZmZmZ dd֐lmZmZmZmZ ddאlmZmZmZmZmZmZmZmZmZmZmZ ddؐlmZmZmZmZmZ ddِlmZmZmZmZmZmZmZmÐZÐmĐZ ddڐlmŐZŐmƐZƐmǐZǐmȐZȐmɐZɐmʐZʐmːZːm̐Z̐m͐Z ddېlmΐZΐmϐZϐmАZАmѐZѐmҐZҐmӐZӐmԐZԐmՐZՐm֐Z֐mאZאmؐZؐmِZ ddܐlmڐZڐmېZېmܐZܐmݐZݐmސZސmߐZߐmZmZmZmZmZ ddݐlmZmZmZmZ ddސlmZmZmZ ddߐlmZmZmZmZmZmZmZ ddlmZmZmZmZmZ ddlŐmZmZmZmZmZ ddlȐmZ ddlʐmZmZ	m 	Z 	m	Z ddlΐ	m	Z	m	Z ddlӐ	m	Z	m	Z	m	Z	m	Z	m	Z	m		Z		m
	Z
 ddlڐ	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z ddlސ	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z ddl	m	Z	m	Z	m	Z	m	Z ddl	m	Z	m	Z	m 	Z 	m!	Z!	m"	Z"	m#	Z# ddl	m$	Z$	m%	Z%	m&	Z&	m'	Z' ddl	m(	Z(	m)	Z)	m*	Z*	m+	Z+	m,	Z, ddl	m-	Z-	m.	Z.	m/	Z/	m0	Z0	m1	Z1	m2	Z2	m3	Z3 ddl	m4	Z4	m5	Z5	m6	Z6	m7	Z7	m8	Z8	m9	Z9	m:	Z:	m;	Z; ddl	m<	Z<	m=	Z=	m>	Z>	m?	Z? ddl	m@	Z@	mA	ZA	mB	ZB	mC	ZC	mD	ZD	mE	ZE	mF	ZF ddl	mG	ZG	mH	ZH	mI	ZI	mJ	ZJ ddl	mK	ZK	mL	ZL	mM	ZM	mN	ZN ddl	mO	ZO ddl	mP	ZP	mQ	ZQ	mR	ZR	mS	ZS	mT	ZT	mU	ZU	mV	ZV ddl	mW	ZW	mX	ZX	mY	ZY ddl	mZ	ZZ	m[	Z[	m\	Z\	m]	Z]	m^	Z^ ddl	m_	Z_	m`	Z`	ma	Za	mb	Zb	mc	Zc	md	Zd ddl	me	Ze	mf	Zf	mg	Zg	mh	Zh	mi	Zi	mj	Zj ddl	mk	Zk	ml	Zl	mm	Zm	mn	Zn	mo	Zo	mp	Zp	mq	Zq	mr	Zr ddl	ms	Zs	mt	Zt ddl	mu	Zu	mv	Zv	mw	Zw	mx	Zx	my	Zy ddl	mz	Zz	m{	Z{	m|	Z|	m}	Z}	m~	Z~	m	Z	m	Z	m	Z	m	Z ddl$	m	Z ddl&	m	Z ddl)	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z ddl,	m	Z	m	Z	m	Z	m	Z	m	Z dd l/	m	Z	m	Z	m	Z	m	Z ddl2	m	Z	m	Z	m	Z	m	Z	m	Z ddl5	m	Z	m	Z	m	Z	m	Z ddl8	m	Z	m	Z	m	Z	m	Z ddl;	m	Z	m	Z	m	Z ddl>	m	Z	m	Z	m	Z ddlB	m	Z	m	Z	m	Z	m	Z ddlE	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z ddlL	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z dd	lS	m	Z	m	Z	m	Z	m	Z	mÐ	ZÐ	mĐ	ZĐ	mŐ	Z dd
lV	mƐ	ZƐ	mǐ	Zǐ	mȐ	ZȐ	mɐ	Zɐ	mʐ	Z ddl\	mː	Zː	m̐	Z̐	m͐	Z͐	mΐ	Zΐ	mϐ	Z ddlb	mА	ZА	mѐ	Zѐ	mҐ	ZҐ	mӐ	Z ddle	mԐ	ZԐ	mՐ	ZՐ	m֐	Z֐	mא	Zא	mؐ	Zؐ	mِ	Zِ	mڐ	Zڐ	mې	Zې	mܐ	Z ddli	mݐ	Zݐ	mސ	Zސ	mߐ	Zߐ	m	Z	m	Z	m	Z	m	Z ddll	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z ddlo	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z ddlr	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z	m	Z ddlu
m 
Z 
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z ddlx
m	
Z	
m

Z

m
Z
m
Z ddl{
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z dd
l
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m 
Z  dd
l!
m"
Z"
m#
Z#
m$
Z$ dd
l%
m&
Z& dd
l'
m(
Z( dd
l)
m*
Z* ze s~e W n$ ek
r   dd
l+T Y nX dd
l,
m-
Z- dd
l.
m/
Z/ ddlP
m0
Z0
m1
Z1
m2
Z2
m3
Z3
m4
Z4
m5
Z5
m6
Z6
m7
Z7
m8
Z8
m9
Z9
m:
Z:
m;
Z;
m<
Z<
m=
Z=
m>
Z>
m?
Z?
m@
Z@ dd
lA
mB
ZB
mC
ZC dd
lD
mE
ZE
mF
ZF
mG
ZG
mH
ZH ddlj
mI
ZI
mJ
ZJ
mK
ZK
mL
ZL
mM
ZM
mN
ZN
mO
ZO
mP
ZP
mQ
ZQ
mR
ZR dd l|
mS
ZS
mT
ZT
mU
ZU
mV
ZV
mW
ZW
mX
ZX
mY
ZY
mZ
ZZ
m[
Z[
m\
Z\
m]
Z]
m^
Z^
m_
Z_
m`
Z`
ma
Za
mb
Zb
mc
Zc
md
Zd
me
Ze
mf
Zf
mg
Zg
mh
Zh
mi
Zi
mj
Zj
mk
Zk
ml
Zl
mm
Zm
mn
Zn
mo
Zo
mp
Zp
mq
Zq
mr
Zr
ms
Zs
mt
Zt
mu
Zu
mv
Zv
mw
Zw
mx
Zx
my
Zy
mz
Zz
m{
Z{
m|
Z|
m}
Z}
m~
Z~ dd!l
m
Z
m
Z
m
Z
m
Z dd"l
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z dd#l
m
Z
m
Z
m
Z dd$l
m
Z
m
Z
m
Z dd%l
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z dd&l֐
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z dd'l
m
Z
m
Z
m
Z
m
Z
m
Z dd(l
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z dd)l
m
Z
m
Z
m
Z dd*l
m
Z
m
Z
m
Z
m
Z
m
Z dd+l
m
Z
m
Z
m
Z
m
Z dd,l
m
Z
m
Z
mÐ
ZÐ
mĐ
Z dd-l
mŐ
ZŐ
mƐ
ZƐ
mǐ
Zǐ
mȐ
ZȐ
mɐ
Zɐ
mʐ
Zʐ
mː
Z dd.l
m̐
Z̐
m͐
Z͐
mΐ
Zΐ
mϐ
Zϐ
mА
ZА
mѐ
Zѐ
mҐ
ZҐ
mӐ
Z dd/l%
mԐ
ZԐ
mՐ
ZՐ
m֐
Z֐
mא
Zא
mؐ
Zؐ
mِ
Z dd0lJ
mڐ
Zڐ
mې
Zې
mܐ
Zܐ
mݐ
Zݐ
mސ
Zސ
mߐ
Zߐ
m
Z
m
Z
m
Z dd1lR
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z dd2l\
m
Z
m
Z
m
Z
m
Z
m
Z dd3lb
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z
m
Z dd4lj
m
Z dd5lrmZ
m
Z
m
Z
m
Z
m
Z
m
Z dd6lym Z mZmZmZmZmZmZmZ dd7lmZm	Z	m
Z
mZmZmZmZmZmZmZ dd8lmZmZmZmZmZmZmZ dd9lmZmZmZmZmZ dd:lmZmZm Z m!Z!m"Z" dd;lm#Z#m$Z$m%Z%m&Z& dd<l֐m'Z'm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z. dd=lm/Z/m0Z0m1Z1m2Z2m3Z3m4Z4 dd>lm5Z5m6Z6m7Z7 dd?lm8Z8m9Z9m:Z:m;Z;m<Z<m=Z=m>Z>m?Z?m@Z@ dd@lmAZAmBZBmCZCmDZDmEZEmFZF ddAl	mGZGmHZHmIZI ddBlmJZJmKZKmLZL ddCl(mMZMmNZNmOZOmPZPmQZQmRZRmSZSmTZTmUZUmVZVmWZW ddDl2mXZXmYZYmZZZm[Z[m\Z\ ddEl8m]Z]m^Z^m_Z_m`Z`maZambZbmcZcmdZdmeZe ddFlBmfZfmgZgmhZh ddGl]miZimjZjmkZkmlZlmmZmmnZnmoZo ddHlampZpmqZqmrZr ddIlimsZsmtZtmuZu ddJlmvZvmwZwmxZxmyZy ddKlmzZzm{Z{m|Z|m}Z} ddLlm~Z~mZmZmZmZmZmZmZmZmZ ddMlmZmZmZmZ ddNlmZmZmZmZmZmZmZmZmZmZ ddOlmZmZmZmZmZmZmZmZmZmZ ddPlmZmZmZmZmZmZmZmZmZmZ ddQlmZmZmZ ddRlmZmZmZmZmZmZ ddSlʐmZmZmZmZ ddTlmZmZmZmZmZ ddUlmZmZmZmZmZ ddVlmZmZmÐZÐmĐZĐmŐZŐmƐZ ddWlmǐZǐmȐZȐmɐZɐmʐZʐmːZːm̐Z̐m͐Z ddXl$mΐZ ddYl&mϐZ ddZl,mАZАmѐZѐmҐZ dd[l2mӐZӐmԐZԐmՐZ dd\lEm֐Z֐mאZאmؐZؐmِZِmڐZ dd]lVmېZېmܐZܐmݐZݐmސZ dd^lbmߐZߐmZmZmZ dd_lemZmZmZmZmZmZmZmZmZ dd`llmZmZmZmZmZmZmZmZmZ ddalrmZmZmZmZmZmZmZmZmZ ddblmZm Z mZmZ ddclmZ z2e re	 re re re se W n" ek
r   ddlT Y n&X dddlmZmZmZ ze
 s2e W n$ ek
rX   ddl	T Y nX ddelPm
Z
mZmZmZmZmZmZmZmZmZmZmZmZmZ ddflmZ ddgljmZmZmZmZmZmZm Z m!Z! ddhl|m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z:m;Z;m<Z< ddilm=Z=m>Z>m?Z?m@Z@mAZAmBZBmCZC ddjlmDZDmEZEmFZFmGZG ddklmHZHmIZImJZJmKZKmLZLmMZMmNZNmOZOmPZPmQZQ ddllmRZRmSZSmTZTmUZUmVZVmWZWmXZXmYZYmZZZ ddmlm[Z[m\Z\m]Z] ddnlm^Z^m_Z_m`Z` ddolǐmaZambZbmcZc ddplmdZdmeZemfZfmgZgmhZhmiZimjZj ddqlJmkZkmlZlmmZmmnZnmoZompZpmqZq ddrlbmrZrmsZsmtZtmuZumvZvmwZwmxZxmyZymzZz ddsljm{Z{ ddtlm|Z|m}Z}m~Z~ ddulmZmZmZ ddvlmZmZmZ ddwlmZmZmZ ddxl	mZmZmZ ddylmZmZmZmZmZ ddzlBmZmZmZ dd{lamZmZmZ dd|limZmZmZ dd}lmZmZmZ dd~lmZmZmZ ddlmZmZmZmZmZmZmZmZ ddlmZmZmZmZmZmZmZmZ ddlmZmZmZmZmZmZmZ ddlȐmZ ddlmZmZmZmZ ddl$mZ ddl&mZ ddl,mZmZmZ ddlEmZmZmZmÐZ ddlVmĐZĐmŐZŐmƐZƐmǐZ ddlbmȐZȐmɐZɐmʐZ ddllmːZːm̐Z̐m͐Z͐mΐZΐmϐZϐmАZАmѐZѐmҐZҐmӐZ n>ddlԐZeeeՃ d ee֐de ideԐje< e se se
 seؐd dS (  z4.34.0    )TYPE_CHECKING   )dependency_versions_check)OptionalDependencyNotAvailable_LazyModuleis_bitsandbytes_availableis_essentia_availableis_flax_availableis_keras_nlp_availableis_librosa_availableis_pretty_midi_availableis_scipy_availableis_sentencepiece_availableis_speech_availableis_tensorflow_text_availableis_tf_availableis_timm_availableis_tokenizers_availableis_torch_availableis_torchvision_availableis_vision_availableloggingPretrainedConfigDataProcessorInputExampleInputFeatures%SingleSentenceClassificationProcessorSquadExampleSquadFeaturesSquadV1ProcessorSquadV2Processorglue_compute_metrics!glue_convert_examples_to_featuresglue_output_modesglue_processorsglue_tasks_num_labels"squad_convert_examples_to_featuresxnli_compute_metricsxnli_output_modesxnli_processorsxnli_tasks_num_labelsDataCollatorDataCollatorForLanguageModeling*DataCollatorForPermutationLanguageModelingDataCollatorForSeq2SeqDataCollatorForSOP"DataCollatorForTokenClassificationDataCollatorForWholeWordMaskDataCollatorWithPaddingDefaultDataCollatordefault_data_collatorSequenceFeatureExtractorBatchFeatureFeatureExtractionMixinGenerationConfigTextIteratorStreamerTextStreamerHfArgumentParseris_clearml_availableis_comet_availableis_neptune_availableis_optuna_availableis_ray_availableis_ray_tune_availableis_sigopt_availableis_tensorboard_availableis_wandb_available	ModelCard(convert_tf_weight_name_to_pt_weight_name$load_pytorch_checkpoint_in_tf2_modelload_pytorch_model_in_tf2_model!load_pytorch_weights_in_tf2_model$load_tf2_checkpoint_in_pytorch_modelload_tf2_model_in_pytorch_model!load_tf2_weights_in_pytorch_model$ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAPAlbertConfig#ALIGN_PRETRAINED_CONFIG_ARCHIVE_MAPAlignConfigAlignProcessorAlignTextConfigAlignVisionConfig%ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAPAltCLIPConfigAltCLIPProcessorAltCLIPTextConfigAltCLIPVisionConfig;AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP	ASTConfig!ALL_PRETRAINED_CONFIG_ARCHIVE_MAPCONFIG_MAPPINGFEATURE_EXTRACTOR_MAPPINGIMAGE_PROCESSOR_MAPPINGMODEL_NAMES_MAPPINGPROCESSOR_MAPPINGTOKENIZER_MAPPING
AutoConfigAutoFeatureExtractorAutoImageProcessorAutoProcessorAutoTokenizer(AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAPAutoformerConfigBarkCoarseConfig
BarkConfigBarkFineConfigBarkProcessorBarkSemanticConfig
BartConfigBartTokenizer"BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP
BeitConfig"BERT_PRETRAINED_CONFIG_ARCHIVE_MAPBasicTokenizer
BertConfigBertTokenizerWordpieceTokenizerBertGenerationConfigBertJapaneseTokenizerCharacterTokenizerMecabTokenizerBertweetTokenizer&BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAPBigBirdConfig-BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAPBigBirdPegasusConfig$BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAPBioGptConfigBioGptTokenizer!BIT_PRETRAINED_CONFIG_ARCHIVE_MAP	BitConfig(BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAPBlenderbotConfigBlenderbotTokenizer.BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAPBlenderbotSmallConfigBlenderbotSmallTokenizer"BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP
BlipConfigBlipProcessorBlipTextConfigBlipVisionConfig$BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAPBlip2ConfigBlip2ProcessorBlip2QFormerConfigBlip2VisionConfig#BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAPBloomConfig)BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAPBridgeTowerConfigBridgeTowerProcessorBridgeTowerTextConfigBridgeTowerVisionConfig"BROS_PRETRAINED_CONFIG_ARCHIVE_MAP
BrosConfigBrosProcessorByT5Tokenizer'CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAPCamembertConfig$CANINE_PRETRAINED_CONFIG_ARCHIVE_MAPCanineConfigCanineTokenizer*CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAPChineseCLIPConfigChineseCLIPProcessorChineseCLIPTextConfigChineseCLIPVisionConfig"CLAP_PRETRAINED_MODEL_ARCHIVE_LISTClapAudioConfig
ClapConfigClapProcessorClapTextConfig"CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP
CLIPConfigCLIPProcessorCLIPTextConfigCLIPTokenizerCLIPVisionConfig%CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAPCLIPSegConfigCLIPSegProcessorCLIPSegTextConfigCLIPSegVisionConfig%CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAPCodeGenConfigCodeGenTokenizer.CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAPConditionalDetrConfig&CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAPConvBertConfigConvBertTokenizer&CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAPConvNextConfig(CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAPConvNextV2Config$CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAPCpmAntConfigCpmAntTokenizer"CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP
CTRLConfigCTRLTokenizer!CVT_PRETRAINED_CONFIG_ARCHIVE_MAP	CvtConfig+DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP-DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAPData2VecAudioConfigData2VecTextConfigData2VecVisionConfig%DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAPDebertaConfigDebertaTokenizer(DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAPDebertaV2Config2DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAPDecisionTransformerConfig-DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAPDeformableDetrConfig"DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP
DeiTConfig#MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAPMCTCTConfigMCTCTFeatureExtractorMCTCTProcessor
MMBTConfig(OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAPOpenLlamaConfig'RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAPRetriBertConfigRetriBertTokenizerTapexTokenizer4TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAPTrajectoryTransformerConfig!VAN_PRETRAINED_CONFIG_ARCHIVE_MAP	VanConfig"DETA_PRETRAINED_CONFIG_ARCHIVE_MAP
DetaConfig"DETR_PRETRAINED_CONFIG_ARCHIVE_MAP
DetrConfig#DINAT_PRETRAINED_CONFIG_ARCHIVE_MAPDinatConfig$DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAPDinov2Config(DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAPDistilBertConfigDistilBertTokenizer(DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAPDonutProcessorDonutSwinConfig!DPR_PRETRAINED_CONFIG_ARCHIVE_MAP	DPRConfigDPRContextEncoderTokenizerDPRQuestionEncoderTokenizerDPRReaderOutputDPRReaderTokenizer!DPT_PRETRAINED_CONFIG_ARCHIVE_MAP	DPTConfig-EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAPEfficientFormerConfig*EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAPEfficientNetConfig%ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAPElectraConfigElectraTokenizer%ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAPEncodecConfigEncodecFeatureExtractorEncoderDecoderConfig#ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAPErnieConfig%ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAPErnieMConfig!ESM_PRETRAINED_CONFIG_ARCHIVE_MAP	EsmConfigEsmTokenizer$FALCON_PRETRAINED_CONFIG_ARCHIVE_MAPFalconConfig&FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAPFlaubertConfigFlaubertTokenizer#FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAPFlavaConfigFlavaImageCodebookConfigFlavaImageConfigFlavaMultimodalConfigFlavaTextConfig"FNET_PRETRAINED_CONFIG_ARCHIVE_MAP
FNetConfig&FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAPFocalNetConfig"FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP
FSMTConfigFSMTTokenizer$FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAPFunnelConfigFunnelTokenizer!GIT_PRETRAINED_CONFIG_ARCHIVE_MAP	GitConfigGitProcessorGitVisionConfig"GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP
GLPNConfig"GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP
GPT2ConfigGPT2Tokenizer)GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAPGPTBigCodeConfig%GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAPGPTNeoConfig&GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAPGPTNeoXConfig/GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAPGPTNeoXJapaneseConfig"GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP
GPTJConfig-GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAPGPTSanJapaneseConfigGPTSanJapaneseTokenizer(GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAPGraphormerConfig&GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAPGroupViTConfigGroupViTTextConfigGroupViTVisionConfigHerbertTokenizer$HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAPHubertConfig#IBERT_PRETRAINED_CONFIG_ARCHIVE_MAPIBertConfig%IDEFICS_PRETRAINED_CONFIG_ARCHIVE_MAPIdeficsConfig&IMAGEGPT_PRETRAINED_CONFIG_ARCHIVE_MAPImageGPTConfig&INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAPInformerConfig*INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAPInstructBlipConfigInstructBlipProcessorInstructBlipQFormerConfigInstructBlipVisionConfig%JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAPJukeboxConfigJukeboxPriorConfigJukeboxTokenizerJukeboxVQVAEConfig&LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAPLayoutLMConfigLayoutLMTokenizer(LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAPLayoutLMv2ConfigLayoutLMv2FeatureExtractorLayoutLMv2ImageProcessorLayoutLMv2ProcessorLayoutLMv2Tokenizer(LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAPLayoutLMv3ConfigLayoutLMv3FeatureExtractorLayoutLMv3ImageProcessorLayoutLMv3ProcessorLayoutLMv3TokenizerLayoutXLMProcessor!LED_PRETRAINED_CONFIG_ARCHIVE_MAP	LEDConfigLEDTokenizer#LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAPLevitConfig"LILT_PRETRAINED_CONFIG_ARCHIVE_MAP
LiltConfig#LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAPLlamaConfig(LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAPLongformerConfigLongformerTokenizer$LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAPLongT5Config"LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP
LukeConfigLukeTokenizer$LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAPLxmertConfigLxmertTokenizer%M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAPM2M100ConfigMarianConfig&MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAPMarkupLMConfigMarkupLMFeatureExtractorMarkupLMProcessorMarkupLMTokenizer)MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAPMask2FormerConfig(MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAPMaskFormerConfigMaskFormerSwinConfigMBartConfig"MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP
MegaConfig+MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAPMegatronBertConfig%MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAPMgpstrConfigMgpstrProcessorMgpstrTokenizer%MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAPMistralConfig(MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAPMobileBertConfigMobileBertTokenizer*MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAPMobileNetV1Config*MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAPMobileNetV2Config'MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAPMobileViTConfig)MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAPMobileViTV2Config#MPNET_PRETRAINED_CONFIG_ARCHIVE_MAPMPNetConfigMPNetTokenizer!MPT_PRETRAINED_CONFIG_ARCHIVE_MAP	MptConfig!MRA_PRETRAINED_CONFIG_ARCHIVE_MAP	MraConfig	MT5Config&MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAPMusicgenConfigMusicgenDecoderConfig	MvpConfigMvpTokenizer!NAT_PRETRAINED_CONFIG_ARCHIVE_MAP	NatConfig#NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAPNezhaConfig&NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAPNllbMoeConfigNougatProcessor+NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAPNystromformerConfig'ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAPOneFormerConfigOneFormerProcessor(OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAPOpenAIGPTConfigOpenAIGPTTokenizer	OPTConfig$OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAPOwlViTConfigOwlViTProcessorOwlViTTextConfigOwlViTVisionConfig%PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAPPegasusConfigPegasusTokenizer'PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAPPegasusXConfig'PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAPPerceiverConfigPerceiverTokenizer'PERSIMMON_PRETRAINED_CONFIG_ARCHIVE_MAPPersimmonConfigPhobertTokenizer(PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAPPix2StructConfigPix2StructProcessorPix2StructTextConfigPix2StructVisionConfig$PLBART_PRETRAINED_CONFIG_ARCHIVE_MAPPLBartConfig(POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAPPoolFormerConfig'POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAPPop2PianoConfig(PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAPProphetNetConfigProphetNetTokenizer!PVT_PRETRAINED_CONFIG_ARCHIVE_MAP	PvtConfig%QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAPQDQBertConfig	RagConfigRagRetrieverRagTokenizer#REALM_PRETRAINED_CONFIG_ARCHIVE_MAPRealmConfigRealmTokenizer&REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAPReformerConfig$REGNET_PRETRAINED_CONFIG_ARCHIVE_MAPRegNetConfig%REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAPRemBertConfig$RESNET_PRETRAINED_CONFIG_ARCHIVE_MAPResNetConfig%ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAPRobertaConfigRobertaTokenizer2ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAPRobertaPreLayerNormConfig&ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAPRoCBertConfigRoCBertTokenizer&ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAPRoFormerConfigRoFormerTokenizer"RWKV_PRETRAINED_CONFIG_ARCHIVE_MAP
RwkvConfig!SAM_PRETRAINED_CONFIG_ARCHIVE_MAP	SamConfigSamMaskDecoderConfigSamProcessorSamPromptEncoderConfigSamVisionConfig'SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAPSegformerConfig!SEW_PRETRAINED_CONFIG_ARCHIVE_MAP	SEWConfig#SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP
SEWDConfigSpeechEncoderDecoderConfig,SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAPSpeech2TextConfigSpeech2TextProcessor.SPEECH_TO_TEXT_2_PRETRAINED_CONFIG_ARCHIVE_MAPSpeech2Text2ConfigSpeech2Text2ProcessorSpeech2Text2Tokenizer&SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP.SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAPSpeechT5ConfigSpeechT5FeatureExtractorSpeechT5HifiGanConfigSpeechT5Processor&SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAPSplinterConfigSplinterTokenizer)SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAPSqueezeBertConfigSqueezeBertTokenizer)SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAPSwiftFormerConfig"SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP
SwinConfig%SWIN2SR_PRETRAINED_CONFIG_ARCHIVE_MAPSwin2SRConfig$SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAPSwinv2Config1SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAPSwitchTransformersConfig T5_PRETRAINED_CONFIG_ARCHIVE_MAPT5Config/TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAPTableTransformerConfig#TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAPTapasConfigTapasTokenizer5TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAPTimeSeriesTransformerConfig)TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAPTimesformerConfigTimmBackboneConfig(TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAPTransfoXLConfigTransfoXLCorpusTransfoXLTokenizer#TROCR_PRETRAINED_CONFIG_ARCHIVE_MAPTrOCRConfigTrOCRProcessor"TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP
TvltConfigTvltFeatureExtractorTvltProcessor
UMT5Config'UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAPUniSpeechConfig+UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAPUniSpeechSatConfigUperNetConfig&VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAPVideoMAEConfig"VILT_PRETRAINED_CONFIG_ARCHIVE_MAP
ViltConfigViltFeatureExtractorViltImageProcessorViltProcessorVisionEncoderDecoderConfigVisionTextDualEncoderConfigVisionTextDualEncoderProcessor)VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAPVisualBertConfig!VIT_PRETRAINED_CONFIG_ARCHIVE_MAP	ViTConfig(VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAPViTHybridConfig%VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAPViTMAEConfig%VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAPViTMSNConfig$VITDET_PRETRAINED_CONFIG_ARCHIVE_MAPVitDetConfig&VITMATTE_PRETRAINED_CONFIG_ARCHIVE_MAPVitMatteConfig"VITS_PRETRAINED_CONFIG_ARCHIVE_MAP
VitsConfigVitsTokenizer#VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAPVivitConfig)WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAPWav2Vec2ConfigWav2Vec2CTCTokenizerWav2Vec2FeatureExtractorWav2Vec2ProcessorWav2Vec2Tokenizer0WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAPWav2Vec2ConformerConfigWav2Vec2PhonemeCTCTokenizerWav2Vec2ProcessorWithLM#WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAPWavLMConfig%WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAPWhisperConfigWhisperFeatureExtractorWhisperProcessorWhisperTokenizer#XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAPXCLIPConfigXCLIPProcessorXCLIPTextConfigXCLIPVisionConfig"XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP
XGLMConfig!XLM_PRETRAINED_CONFIG_ARCHIVE_MAP	XLMConfigXLMTokenizer,XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAPXLMProphetNetConfig)XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAPXLMRobertaConfig,XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAPXLMRobertaXLConfig#XLNET_PRETRAINED_CONFIG_ARCHIVE_MAPXLNetConfig"XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP
XmodConfig#YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAPYolosConfig"YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP
YosoConfigAudioClassificationPipeline"AutomaticSpeechRecognitionPipelineConversationConversationalPipelineCsvPipelineDataFormatDepthEstimationPipeline!DocumentQuestionAnsweringPipelineFeatureExtractionPipelineFillMaskPipelineImageClassificationPipelineImageSegmentationPipelineImageToImagePipelineImageToTextPipelineJsonPipelineDataFormatNerPipelineObjectDetectionPipelinePipedPipelineDataFormatPipelinePipelineDataFormatQuestionAnsweringPipelineSummarizationPipelineTableQuestionAnsweringPipelineText2TextGenerationPipelineTextClassificationPipelineTextGenerationPipelineTextToAudioPipelineTokenClassificationPipelineTranslationPipelineVideoClassificationPipelineVisualQuestionAnsweringPipeline#ZeroShotAudioClassificationPipelineZeroShotClassificationPipeline#ZeroShotImageClassificationPipelineZeroShotObjectDetectionPipelinepipelineProcessorMixinPreTrainedTokenizer
AddedTokenBatchEncodingCharSpanPreTrainedTokenizerBaseSpecialTokensMixin	TokenSpanAgentAzureOpenAiAgentHfAgent
LocalAgentOpenAiAgentPipelineTool
RemoteToolToollaunch_gradio_demo	load_toolDefaultFlowCallbackEarlyStoppingCallbackPrinterCallbackProgressCallbackTrainerCallbackTrainerControlTrainerStateEvalPredictionIntervalStrategySchedulerTypeenable_full_determinismset_seedTrainingArgumentsSeq2SeqTrainingArgumentsTFTrainingArgumentsCONFIG_NAMEMODEL_CARD_NAMEPYTORCH_PRETRAINED_BERT_CACHEPYTORCH_TRANSFORMERS_CACHESPIECE_UNDERLINETF2_WEIGHTS_NAMETF_WEIGHTS_NAMETRANSFORMERS_CACHEWEIGHTS_NAME
TensorTypeadd_end_docstringsadd_start_docstringsis_apex_availabler   is_datasets_availableis_decord_availableis_faiss_availabler	   r
   is_phonemizer_availableis_psutil_availableis_py3nvml_availableis_pyctcdecode_availableis_safetensors_availabler   r   is_sklearn_availabler   r   r   r   r   r   is_torch_neuroncore_availableis_torch_npu_availableis_torch_tpu_availabler   is_torch_xpu_availabler   r   BitsAndBytesConfig
GPTQConfig(  Zaudio_utilsZ	benchmarkcommandsconfiguration_utilsZconvert_graph_to_onnxZ+convert_slow_tokenizers_checkpoints_to_fastZ)convert_tf_hub_seq_to_seq_bert_to_pytorchdatazdata.data_collatorzdata.metricszdata.processorsZdebug_utilsZ	deepspeedr   Zdependency_versions_tableZdynamic_module_utils!feature_extraction_sequence_utilsfeature_extraction_utilsZ
file_utils
generationhf_argparserZhyperparameter_searchZimage_transformsintegrations	modelcardmodeling_tf_pytorch_utilsmodelsmodels.albertmodels.alignmodels.altclip$models.audio_spectrogram_transformermodels.automodels.autoformermodels.barkmodels.bartmodels.barthezmodels.bartphomodels.beitmodels.bertmodels.bert_generationzmodels.bert_japanesezmodels.bertweetmodels.big_birdmodels.bigbird_pegasusmodels.biogpt
models.bitmodels.blenderbotmodels.blenderbot_smallmodels.blipmodels.blip_2models.bloommodels.bridgetowermodels.broszmodels.byt5models.camembertmodels.caninemodels.chinese_clipmodels.clapmodels.clipmodels.clipsegmodels.code_llamamodels.codegenmodels.conditional_detrmodels.convbertmodels.convnextmodels.convnextv2
models.cpmmodels.cpmantmodels.ctrl
models.cvtmodels.data2vecmodels.debertamodels.deberta_v2models.decision_transformermodels.deformable_detrmodels.deitzmodels.deprecatedzmodels.deprecated.bortmodels.deprecated.mctctmodels.deprecated.mmbtmodels.deprecated.open_llamamodels.deprecated.retribertzmodels.deprecated.tapex(models.deprecated.trajectory_transformermodels.deprecated.vanmodels.detamodels.detrzmodels.dialogptmodels.dinatmodels.dinov2models.distilbertz
models.ditmodels.donut
models.dpr
models.dptmodels.efficientformermodels.efficientnetmodels.electramodels.encodecmodels.encoder_decodermodels.erniemodels.ernie_m
models.esmmodels.falconmodels.flaubertmodels.flavamodels.fnetmodels.focalnetmodels.fsmtmodels.funnel
models.gitmodels.glpnmodels.gpt2models.gpt_bigcodemodels.gpt_neomodels.gpt_neoxmodels.gpt_neox_japanesemodels.gpt_sw3models.gptjmodels.gptsan_japanesemodels.graphormermodels.groupvitmodels.herbertmodels.hubertmodels.ibertmodels.ideficsmodels.imagegptmodels.informermodels.instructblipmodels.jukeboxmodels.layoutlmmodels.layoutlmv2models.layoutlmv3models.layoutxlm
models.ledmodels.levitmodels.liltmodels.llamamodels.longformermodels.longt5models.lukemodels.lxmertmodels.m2m_100models.marianmodels.markuplmmodels.mask2formermodels.maskformermodels.mbartmodels.mbart50models.megamodels.megatron_bertzmodels.megatron_gpt2models.mgp_strmodels.mistralmodels.mlukemodels.mobilebertmodels.mobilenet_v1models.mobilenet_v2models.mobilevitmodels.mobilevitv2models.mpnet
models.mpt
models.mra
models.mt5models.musicgen
models.mvp
models.natmodels.nezhamodels.nllbmodels.nllb_moemodels.nougatmodels.nystromformermodels.oneformermodels.openai
models.optmodels.owlvitmodels.pegasusmodels.pegasus_xmodels.perceivermodels.persimmonzmodels.phobertmodels.pix2structmodels.plbartmodels.poolformermodels.pop2pianomodels.prophetnet
models.pvtmodels.qdqbert
models.ragmodels.realmmodels.reformermodels.regnetmodels.rembertmodels.resnetmodels.robertamodels.roberta_prelayernormmodels.roc_bertmodels.roformermodels.rwkv
models.sammodels.segformer
models.sewmodels.sew_dmodels.speech_encoder_decodermodels.speech_to_textmodels.speech_to_text_2models.speecht5models.splintermodels.squeezebertmodels.swiftformermodels.swinmodels.swin2srmodels.swinv2models.switch_transformers	models.t5models.table_transformermodels.tapasmodels.time_series_transformermodels.timesformermodels.timm_backbonemodels.transfo_xlmodels.trocrmodels.tvltmodels.umt5models.unispeechmodels.unispeech_satmodels.upernetmodels.videomaemodels.viltmodels.vision_encoder_decodermodels.vision_text_dual_encodermodels.visual_bert
models.vitmodels.vit_hybridmodels.vit_maemodels.vit_msnmodels.vitdetmodels.vitmattemodels.vitsmodels.vivitmodels.wav2vec2models.wav2vec2_conformerzmodels.wav2vec2_phonemezmodels.wav2vec2_with_lmmodels.wavlmmodels.whispermodels.x_clipmodels.xglm
models.xlmmodels.xlm_prophetnetmodels.xlm_robertamodels.xlm_roberta_xlmodels.xlnetmodels.xmodmodels.yolosmodels.yosoZonnx	pipelinesprocessing_utilsZtesting_utilstokenization_utilstokenization_utils_basetoolstrainer_callbacktrainer_utilstraining_argstraining_args_seq2seqtraining_args_tfutilszutils.quantization_config)dummy_sentencepiece_objectsc                 C   s   g | ]}| d s|qS _
startswith.0name r  V/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/__init__.py
<listcomp>  s    
 r  z!utils.dummy_sentencepiece_objectsr  AlbertTokenizerr  BarthezTokenizerr  BartphoTokenizerr   BertGenerationTokenizerr  BigBirdTokenizerr  CamembertTokenizerr  CodeLlamaTokenizerr  CpmTokenizerr  DebertaV2Tokenizerr6  ErnieMTokenizerr;  FNetTokenizerrF  GPTSw3TokenizerrV  LayoutXLMTokenizerrZ  LlamaTokenizerr_  M2M100Tokenizerr`  MarianTokenizerrd  MBartTokenizerre  MBart50Tokenizerrj  MLukeTokenizerrs  MT5Tokenizerrx  NllbTokenizerr  r  PLBartTokenizerr  ReformerTokenizerr  RemBertTokenizerr  Speech2TextTokenizerr  SpeechT5Tokenizerr  T5Tokenizerr  XGLMTokenizerr  XLMProphetNetTokenizerr  XLMRobertaTokenizerr  XLNetTokenizer)dummy_tokenizers_objectsc                 C   s   g | ]}| d s|qS r  r  r  r  r  r  r  /  s    
 zutils.dummy_tokenizers_objectsAlbertTokenizerFastr  BartTokenizerFastBarthezTokenizerFastr  BertTokenizerFastBigBirdTokenizerFastr  BlenderbotTokenizerFastr  BlenderbotSmallTokenizerFastr	  BloomTokenizerFastCamembertTokenizerFastr  CLIPTokenizerFastCodeLlamaTokenizerFastr  CodeGenTokenizerFastr  ConvBertTokenizerFastCpmTokenizerFastr  DebertaTokenizerFastDebertaV2TokenizerFastr%  RetriBertTokenizerFastr,  DistilBertTokenizerFastr.  DPRContextEncoderTokenizerFastDPRQuestionEncoderTokenizerFastDPRReaderTokenizerFastr2  ElectraTokenizerFastFNetTokenizerFastr>  FunnelTokenizerFastrA  GPT2TokenizerFastrD  GPTNeoXTokenizerFastrE  GPTNeoXJapaneseTokenizerrK  HerbertTokenizerFastrS  LayoutLMTokenizerFastrT  LayoutLMv2TokenizerFastrU  LayoutLMv3TokenizerFastLayoutXLMTokenizerFastrW  LEDTokenizerFastLlamaTokenizerFastr[  LongformerTokenizerFastr^  LxmertTokenizerFastra  MarkupLMTokenizerFastMBartTokenizerFastMBart50TokenizerFastrk  MobileBertTokenizerFastrp  MPNetTokenizerFastMT5TokenizerFastru  MvpTokenizerFastNllbTokenizerFastrz  NougatTokenizerFastr}  OpenAIGPTTokenizerFastPegasusTokenizerFastr  RealmTokenizerFastReformerTokenizerFastRemBertTokenizerFastr  RobertaTokenizerFastr  RoFormerTokenizerFastr  SplinterTokenizerFastr  SqueezeBertTokenizerFastT5TokenizerFastr  WhisperTokenizerFastXGLMTokenizerFastXLMRobertaTokenizerFastXLNetTokenizerFastPreTrainedTokenizerFasttokenization_utils_fast)*dummy_sentencepiece_and_tokenizers_objectsc                 C   s   g | ]}| d s|qS r  r  r  r  r  r  r  x  s    
 z0utils.dummy_sentencepiece_and_tokenizers_objectsSLOW_TO_FAST_CONVERTERSconvert_slow_tokenizer)dummy_speech_objectsc                 C   s   g | ]}| d s|qS r  r  r  r  r  r  r    s    
 zutils.dummy_speech_objectsr  ASTFeatureExtractorSpeech2TextFeatureExtractor)dummy_tensorflow_text_objectsc                 C   s   g | ]}| d s|qS r  r  r  r  r  r  r    s    
 z#utils.dummy_tensorflow_text_objectsTFBertTokenizer)dummy_keras_nlp_objectsc                 C   s   g | ]}| d s|qS r  r  r  r  r  r  r    s    
 zutils.dummy_keras_nlp_objectsTFGPT2Tokenizer)dummy_vision_objectsc                 C   s   g | ]}| d s|qS r  r  r  r  r  r  r    s    
 zutils.dummy_vision_objectsImageProcessingMixinimage_processing_utilsImageFeatureExtractionMixinimage_utilsr  BeitFeatureExtractorBeitImageProcessorr  BitImageProcessorr  BlipImageProcessorr
  BridgeTowerImageProcessorr  ChineseCLIPFeatureExtractorChineseCLIPImageProcessorCLIPFeatureExtractorCLIPImageProcessorr  ConditionalDetrFeatureExtractorConditionalDetrImageProcessorr  ConvNextFeatureExtractorConvNextImageProcessorr   DeformableDetrFeatureExtractorDeformableDetrImageProcessorr!  DeiTFeatureExtractorDeiTImageProcessorr(  DetaImageProcessorr)  DetrFeatureExtractorDetrImageProcessorr-  DonutFeatureExtractorDonutImageProcessorr/  DPTFeatureExtractorDPTImageProcessorr0  EfficientFormerImageProcessorr1  EfficientNetImageProcessorr:  FlavaFeatureExtractorFlavaImageProcessorFlavaProcessorr@  GLPNFeatureExtractorGLPNImageProcessorrN  IdeficsImageProcessorrO  ImageGPTFeatureExtractorImageGPTImageProcessorrX  LevitFeatureExtractorLevitImageProcessorrb  Mask2FormerImageProcessorrc  MaskFormerFeatureExtractorMaskFormerImageProcessorrl  MobileNetV1FeatureExtractorMobileNetV1ImageProcessorrm  MobileNetV2FeatureExtractorMobileNetV2ImageProcessorrn  MobileViTFeatureExtractorMobileViTImageProcessorNougatImageProcessorr|  OneFormerImageProcessorr  OwlViTFeatureExtractorOwlViTImageProcessorr  PerceiverFeatureExtractorPerceiverImageProcessorr  Pix2StructImageProcessorr  PoolFormerFeatureExtractorPoolFormerImageProcessorr  PvtImageProcessorr  SamImageProcessorr  SegformerFeatureExtractorSegformerImageProcessorr  Swin2SRImageProcessorr  TvltImageProcessorr  VideoMAEFeatureExtractorVideoMAEImageProcessorr  r  ViTFeatureExtractorViTImageProcessorr  ViTHybridImageProcessorr  VitMatteImageProcessorr  VivitImageProcessorr  YolosFeatureExtractorYolosImageProcessor)dummy_pt_objectsc                 C   s   g | ]}| d s|qS r  r  r  r  r  r  r    s     
 zutils.dummy_pt_objectsZactivationsPyTorchBenchmarkzbenchmark.benchmarkPyTorchBenchmarkArgumentszbenchmark.benchmark_argsGlueDatasetGlueDataTrainingArgumentsLineByLineTextDatasetLineByLineWithRefDatasetLineByLineWithSOPTextDatasetSquadDatasetSquadDataTrainingArgumentsTextDataset$TextDatasetForNextSentencePredictionzdata.datasetsr  #AlternatingCodebooksLogitsProcessor
BeamScorerBeamSearchScorer%ClassifierFreeGuidanceLogitsProcessorConstrainedBeamSearchScorer
ConstraintConstraintListStateDisjunctiveConstraint#EncoderNoRepeatNGramLogitsProcessor'EncoderRepetitionPenaltyLogitsProcessorEpsilonLogitsWarperEtaLogitsWarperExponentialDecayLengthPenaltyForcedBOSTokenLogitsProcessorForcedEOSTokenLogitsProcessorForceTokensLogitsProcessorGenerationMixinHammingDiversityLogitsProcessorInfNanRemoveLogitsProcessorLogitNormalizationLogitsProcessorLogitsProcessorListLogitsWarperMaxLengthCriteriaMaxTimeCriteriaMinLengthLogitsProcessor!MinNewTokensLengthLogitsProcessorNoBadWordsLogitsProcessorNoRepeatNGramLogitsProcessorPhrasalConstraint PrefixConstrainedLogitsProcessor RepetitionPenaltyLogitsProcessorSequenceBiasLogitsProcessorStoppingCriteriaStoppingCriteriaList$SuppressTokensAtBeginLogitsProcessorSuppressTokensLogitsProcessorTemperatureLogitsWarperTopKLogitsWarperTopPLogitsWarperTypicalLogitsWarper.UnbatchedClassifierFreeGuidanceLogitsProcessorWhisperTimeStampLogitsProcessortop_k_top_p_filteringZgeneration_utilsZmodeling_outputsPreTrainedModelmodeling_utils$ALBERT_PRETRAINED_MODEL_ARCHIVE_LISTAlbertForMaskedLMAlbertForMultipleChoiceAlbertForPreTrainingAlbertForQuestionAnsweringAlbertForSequenceClassificationAlbertForTokenClassificationAlbertModelAlbertPreTrainedModelload_tf_weights_in_albertr  #ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST
AlignModelAlignPreTrainedModelAlignTextModelAlignVisionModelr  %ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LISTAltCLIPModelAltCLIPPreTrainedModelAltCLIPTextModelAltCLIPVisionModel;AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LISTASTForAudioClassificationASTModelASTPreTrainedModelr  &MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING,MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPINGMODEL_FOR_AUDIO_XVECTOR_MAPPINGMODEL_FOR_BACKBONE_MAPPING'MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPINGMODEL_FOR_CAUSAL_LM_MAPPINGMODEL_FOR_CTC_MAPPING"MODEL_FOR_DEPTH_ESTIMATION_MAPPING-MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING&MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING$MODEL_FOR_IMAGE_SEGMENTATION_MAPPING MODEL_FOR_IMAGE_TO_IMAGE_MAPPING'MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING'MODEL_FOR_MASKED_IMAGE_MODELING_MAPPINGMODEL_FOR_MASKED_LM_MAPPING!MODEL_FOR_MASK_GENERATION_MAPPING!MODEL_FOR_MULTIPLE_CHOICE_MAPPING*MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING"MODEL_FOR_OBJECT_DETECTION_MAPPINGMODEL_FOR_PRETRAINING_MAPPING$MODEL_FOR_QUESTION_ANSWERING_MAPPING'MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING&MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING)MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING"MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING*MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPINGMODEL_FOR_TEXT_ENCODING_MAPPING%MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING"MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING&MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING(MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING&MODEL_FOR_VIDEO_CLASSIFICATION_MAPPINGMODEL_FOR_VISION_2_SEQ_MAPPING+MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING0MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING,MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPINGMODEL_MAPPINGMODEL_WITH_LM_HEAD_MAPPINGAutoBackbone	AutoModelAutoModelForAudioClassification$AutoModelForAudioFrameClassificationAutoModelForAudioXVectorAutoModelForCausalLMAutoModelForCTCAutoModelForDepthEstimation%AutoModelForDocumentQuestionAnsweringAutoModelForImageClassificationAutoModelForImageSegmentationAutoModelForImageToImage AutoModelForInstanceSegmentationAutoModelForMaskedImageModelingAutoModelForMaskedLMAutoModelForMaskGenerationAutoModelForMultipleChoice"AutoModelForNextSentencePredictionAutoModelForObjectDetectionAutoModelForPreTrainingAutoModelForQuestionAnswering AutoModelForSemanticSegmentationAutoModelForSeq2SeqLM"AutoModelForSequenceClassificationAutoModelForSpeechSeq2Seq"AutoModelForTableQuestionAnsweringAutoModelForTextEncodingAutoModelForTextToSpectrogramAutoModelForTextToWaveformAutoModelForTokenClassification!AutoModelForUniversalSegmentationAutoModelForVideoClassificationAutoModelForVision2Seq#AutoModelForVisualQuestionAnswering'AutoModelForZeroShotImageClassification#AutoModelForZeroShotObjectDetectionAutoModelWithLMHeadr  (AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LISTAutoformerForPredictionAutoformerModelAutoformerPreTrainedModelr  "BARK_PRETRAINED_MODEL_ARCHIVE_LISTBarkCausalModelBarkCoarseModelBarkFineModel	BarkModelBarkPreTrainedModelBarkSemanticModel"BART_PRETRAINED_MODEL_ARCHIVE_LISTBartForCausalLMBartForConditionalGenerationBartForQuestionAnsweringBartForSequenceClassification	BartModelBartPretrainedModelBartPreTrainedModelPretrainedBartModel"BEIT_PRETRAINED_MODEL_ARCHIVE_LISTBeitForImageClassificationBeitForMaskedImageModelingBeitForSemanticSegmentation	BeitModelBeitPreTrainedModel"BERT_PRETRAINED_MODEL_ARCHIVE_LISTBertForMaskedLMBertForMultipleChoiceBertForNextSentencePredictionBertForPreTrainingBertForQuestionAnsweringBertForSequenceClassificationBertForTokenClassification	BertLayerBertLMHeadModel	BertModelBertPreTrainedModelload_tf_weights_in_bertBertGenerationDecoderBertGenerationEncoderBertGenerationPreTrainedModel"load_tf_weights_in_bert_generation&BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LISTBigBirdForCausalLMBigBirdForMaskedLMBigBirdForMultipleChoiceBigBirdForPreTrainingBigBirdForQuestionAnswering BigBirdForSequenceClassificationBigBirdForTokenClassificationBigBirdLayerBigBirdModelBigBirdPreTrainedModelload_tf_weights_in_big_birdr  -BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LISTBigBirdPegasusForCausalLM&BigBirdPegasusForConditionalGeneration"BigBirdPegasusForQuestionAnswering'BigBirdPegasusForSequenceClassificationBigBirdPegasusModelBigBirdPegasusPreTrainedModelr  $BIOGPT_PRETRAINED_MODEL_ARCHIVE_LISTBioGptForCausalLMBioGptForSequenceClassificationBioGptForTokenClassificationBioGptModelBioGptPreTrainedModel!BIT_PRETRAINED_MODEL_ARCHIVE_LISTBitBackboneBitForImageClassificationBitModelBitPreTrainedModel(BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LISTBlenderbotForCausalLM"BlenderbotForConditionalGenerationBlenderbotModelBlenderbotPreTrainedModel.BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LISTBlenderbotSmallForCausalLM'BlenderbotSmallForConditionalGenerationBlenderbotSmallModelBlenderbotSmallPreTrainedModel"BLIP_PRETRAINED_MODEL_ARCHIVE_LISTBlipForConditionalGenerationBlipForImageTextRetrievalBlipForQuestionAnswering	BlipModelBlipPreTrainedModelBlipTextModelBlipVisionModelr  $BLIP_2_PRETRAINED_MODEL_ARCHIVE_LISTBlip2ForConditionalGeneration
Blip2ModelBlip2PreTrainedModelBlip2QFormerModelBlip2VisionModel#BLOOM_PRETRAINED_MODEL_ARCHIVE_LISTBloomForCausalLMBloomForQuestionAnsweringBloomForSequenceClassificationBloomForTokenClassification
BloomModelBloomPreTrainedModel)BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST!BridgeTowerForContrastiveLearning#BridgeTowerForImageAndTextRetrievalBridgeTowerForMaskedLMBridgeTowerModelBridgeTowerPreTrainedModelr  "BROS_PRETRAINED_MODEL_ARCHIVE_LISTBrosForTokenClassification	BrosModelBrosPreTrainedModel!BrosSpadeEEForTokenClassification!BrosSpadeELForTokenClassification'CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LISTCamembertForCausalLMCamembertForMaskedLMCamembertForMultipleChoiceCamembertForQuestionAnswering"CamembertForSequenceClassificationCamembertForTokenClassificationCamembertModelCamembertPreTrainedModelr  $CANINE_PRETRAINED_MODEL_ARCHIVE_LISTCanineForMultipleChoiceCanineForQuestionAnsweringCanineForSequenceClassificationCanineForTokenClassificationCanineLayerCanineModelCaninePreTrainedModelload_tf_weights_in_canine*CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LISTChineseCLIPModelChineseCLIPPreTrainedModelChineseCLIPTextModelChineseCLIPVisionModelr  ClapAudioModelClapAudioModelWithProjectionClapFeatureExtractor	ClapModelClapPreTrainedModelClapTextModelClapTextModelWithProjection"CLIP_PRETRAINED_MODEL_ARCHIVE_LIST	CLIPModelCLIPPreTrainedModelCLIPTextModelCLIPTextModelWithProjectionCLIPVisionModelCLIPVisionModelWithProjectionr  %CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LISTCLIPSegForImageSegmentationCLIPSegModelCLIPSegPreTrainedModelCLIPSegTextModelCLIPSegVisionModel%CODEGEN_PRETRAINED_MODEL_ARCHIVE_LISTCodeGenForCausalLMCodeGenModelCodeGenPreTrainedModel.CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST!ConditionalDetrForObjectDetectionConditionalDetrForSegmentationConditionalDetrModelConditionalDetrPreTrainedModel&CONVBERT_PRETRAINED_MODEL_ARCHIVE_LISTConvBertForMaskedLMConvBertForMultipleChoiceConvBertForQuestionAnswering!ConvBertForSequenceClassificationConvBertForTokenClassificationConvBertLayerConvBertModelConvBertPreTrainedModelload_tf_weights_in_convbert&CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LISTConvNextBackboneConvNextForImageClassificationConvNextModelConvNextPreTrainedModelr  (CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LISTConvNextV2Backbone ConvNextV2ForImageClassificationConvNextV2ModelConvNextV2PreTrainedModelr  $CPMANT_PRETRAINED_MODEL_ARCHIVE_LISTCpmAntForCausalLMCpmAntModelCpmAntPreTrainedModelr  "CTRL_PRETRAINED_MODEL_ARCHIVE_LISTCTRLForSequenceClassificationCTRLLMHeadModel	CTRLModelCTRLPreTrainedModelr  !CVT_PRETRAINED_MODEL_ARCHIVE_LISTCvtForImageClassificationCvtModelCvtPreTrainedModelr  ,DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST+DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST-DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST(Data2VecAudioForAudioFrameClassificationData2VecAudioForCTC&Data2VecAudioForSequenceClassificationData2VecAudioForXVectorData2VecAudioModelData2VecAudioPreTrainedModelData2VecTextForCausalLMData2VecTextForMaskedLMData2VecTextForMultipleChoice Data2VecTextForQuestionAnswering%Data2VecTextForSequenceClassification"Data2VecTextForTokenClassificationData2VecTextModelData2VecTextPreTrainedModel$Data2VecVisionForImageClassification%Data2VecVisionForSemanticSegmentationData2VecVisionModelData2VecVisionPreTrainedModel%DEBERTA_PRETRAINED_MODEL_ARCHIVE_LISTDebertaForMaskedLMDebertaForQuestionAnswering DebertaForSequenceClassificationDebertaForTokenClassificationDebertaModelDebertaPreTrainedModel(DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LISTDebertaV2ForMaskedLMDebertaV2ForMultipleChoiceDebertaV2ForQuestionAnswering"DebertaV2ForSequenceClassificationDebertaV2ForTokenClassificationDebertaV2ModelDebertaV2PreTrainedModelr  2DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LISTDecisionTransformerGPT2Model&DecisionTransformerGPT2PreTrainedModelDecisionTransformerModel"DecisionTransformerPreTrainedModel-DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST DeformableDetrForObjectDetectionDeformableDetrModelDeformableDetrPreTrainedModel"DEIT_PRETRAINED_MODEL_ARCHIVE_LISTDeiTForImageClassification%DeiTForImageClassificationWithTeacherDeiTForMaskedImageModeling	DeiTModelDeiTPreTrainedModelr"  #MCTCT_PRETRAINED_MODEL_ARCHIVE_LISTMCTCTForCTC
MCTCTModelMCTCTPreTrainedModelr#  MMBTForClassification	MMBTModelModalEmbeddingsr$  OpenLlamaForCausalLM"OpenLlamaForSequenceClassificationOpenLlamaModelOpenLlamaPreTrainedModel'RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LISTRetriBertModelRetriBertPreTrainedModelr&  4TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LISTTrajectoryTransformerModel$TrajectoryTransformerPreTrainedModelr'  !VAN_PRETRAINED_MODEL_ARCHIVE_LISTVanForImageClassificationVanModelVanPreTrainedModel"DETA_PRETRAINED_MODEL_ARCHIVE_LISTDetaForObjectDetection	DetaModelDetaPreTrainedModel"DETR_PRETRAINED_MODEL_ARCHIVE_LISTDetrForObjectDetectionDetrForSegmentation	DetrModelDetrPreTrainedModelr*  #DINAT_PRETRAINED_MODEL_ARCHIVE_LISTDinatBackboneDinatForImageClassification
DinatModelDinatPreTrainedModelr+  $DINOV2_PRETRAINED_MODEL_ARCHIVE_LISTDinov2BackboneDinov2ForImageClassificationDinov2ModelDinov2PreTrainedModel(DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LISTDistilBertForMaskedLMDistilBertForMultipleChoiceDistilBertForQuestionAnswering#DistilBertForSequenceClassification DistilBertForTokenClassificationDistilBertModelDistilBertPreTrainedModel(DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LISTDonutSwinModelDonutSwinPreTrainedModel1DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST2DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST(DPR_READER_PRETRAINED_MODEL_ARCHIVE_LISTDPRContextEncoderDPRPretrainedContextEncoderDPRPreTrainedModelDPRPretrainedQuestionEncoderDPRPretrainedReaderDPRQuestionEncoder	DPRReader!DPT_PRETRAINED_MODEL_ARCHIVE_LISTDPTForDepthEstimationDPTForSemanticSegmentationDPTModelDPTPreTrainedModel-EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST%EfficientFormerForImageClassification0EfficientFormerForImageClassificationWithTeacherEfficientFormerModelEfficientFormerPreTrainedModel*EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST"EfficientNetForImageClassificationEfficientNetModelEfficientNetPreTrainedModel%ELECTRA_PRETRAINED_MODEL_ARCHIVE_LISTElectraForCausalLMElectraForMaskedLMElectraForMultipleChoiceElectraForPreTrainingElectraForQuestionAnswering ElectraForSequenceClassificationElectraForTokenClassificationElectraModelElectraPreTrainedModelload_tf_weights_in_electrar3  %ENCODEC_PRETRAINED_MODEL_ARCHIVE_LISTEncodecModelEncodecPreTrainedModelr4  EncoderDecoderModelr5  #ERNIE_PRETRAINED_MODEL_ARCHIVE_LISTErnieForCausalLMErnieForMaskedLMErnieForMultipleChoiceErnieForNextSentencePredictionErnieForPreTrainingErnieForQuestionAnsweringErnieForSequenceClassificationErnieForTokenClassification
ErnieModelErniePreTrainedModel%ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LISTErnieMForInformationExtractionErnieMForMultipleChoiceErnieMForQuestionAnsweringErnieMForSequenceClassificationErnieMForTokenClassificationErnieMModelErnieMPreTrainedModelr7  !ESM_PRETRAINED_MODEL_ARCHIVE_LISTEsmFoldPreTrainedModelEsmForMaskedLMEsmForProteinFoldingEsmForSequenceClassificationEsmForTokenClassificationEsmModelEsmPreTrainedModelr8  $FALCON_PRETRAINED_MODEL_ARCHIVE_LISTFalconForCausalLMFalconForQuestionAnsweringFalconForSequenceClassificationFalconForTokenClassificationFalconModelFalconPreTrainedModelr9  &FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LISTFlaubertForMultipleChoiceFlaubertForQuestionAnswering"FlaubertForQuestionAnsweringSimple!FlaubertForSequenceClassificationFlaubertForTokenClassificationFlaubertModelFlaubertPreTrainedModelFlaubertWithLMHeadModel#FLAVA_PRETRAINED_MODEL_ARCHIVE_LISTFlavaForPreTrainingFlavaImageCodebookFlavaImageModel
FlavaModelFlavaMultimodalModelFlavaPreTrainedModelFlavaTextModel"FNET_PRETRAINED_MODEL_ARCHIVE_LISTFNetForMaskedLMFNetForMultipleChoiceFNetForNextSentencePredictionFNetForPreTrainingFNetForQuestionAnsweringFNetForSequenceClassificationFNetForTokenClassification	FNetLayer	FNetModelFNetPreTrainedModelr<  &FOCALNET_PRETRAINED_MODEL_ARCHIVE_LISTFocalNetBackboneFocalNetForImageClassificationFocalNetForMaskedImageModelingFocalNetModelFocalNetPreTrainedModelr=  FSMTForConditionalGeneration	FSMTModelPretrainedFSMTModel$FUNNEL_PRETRAINED_MODEL_ARCHIVE_LISTFunnelBaseModelFunnelForMaskedLMFunnelForMultipleChoiceFunnelForPreTrainingFunnelForQuestionAnsweringFunnelForSequenceClassificationFunnelForTokenClassificationFunnelModelFunnelPreTrainedModelload_tf_weights_in_funnelr?  !GIT_PRETRAINED_MODEL_ARCHIVE_LISTGitForCausalLMGitModelGitPreTrainedModelGitVisionModel"GLPN_PRETRAINED_MODEL_ARCHIVE_LISTGLPNForDepthEstimation	GLPNModelGLPNPreTrainedModel"GPT2_PRETRAINED_MODEL_ARCHIVE_LISTGPT2DoubleHeadsModelGPT2ForQuestionAnsweringGPT2ForSequenceClassificationGPT2ForTokenClassificationGPT2LMHeadModel	GPT2ModelGPT2PreTrainedModelload_tf_weights_in_gpt2rB  )GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LISTGPTBigCodeForCausalLM#GPTBigCodeForSequenceClassification GPTBigCodeForTokenClassificationGPTBigCodeModelGPTBigCodePreTrainedModelrC  %GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LISTGPTNeoForCausalLMGPTNeoForQuestionAnsweringGPTNeoForSequenceClassificationGPTNeoForTokenClassificationGPTNeoModelGPTNeoPreTrainedModelload_tf_weights_in_gpt_neo&GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LISTGPTNeoXForCausalLMGPTNeoXForQuestionAnswering GPTNeoXForSequenceClassificationGPTNeoXForTokenClassificationGPTNeoXLayerGPTNeoXModelGPTNeoXPreTrainedModel/GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LISTGPTNeoXJapaneseForCausalLMGPTNeoXJapaneseLayerGPTNeoXJapaneseModelGPTNeoXJapanesePreTrainedModelrG  "GPTJ_PRETRAINED_MODEL_ARCHIVE_LISTGPTJForCausalLMGPTJForQuestionAnsweringGPTJForSequenceClassification	GPTJModelGPTJPreTrainedModelrH  -GPTSAN_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST&GPTSanJapaneseForConditionalGenerationGPTSanJapaneseModelGPTSanJapanesePreTrainedModelrI  (GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST GraphormerForGraphClassificationGraphormerModelGraphormerPreTrainedModelrJ  &GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LISTGroupViTModelGroupViTPreTrainedModelGroupViTTextModelGroupViTVisionModelrL  $HUBERT_PRETRAINED_MODEL_ARCHIVE_LISTHubertForCTCHubertForSequenceClassificationHubertModelHubertPreTrainedModelrM  #IBERT_PRETRAINED_MODEL_ARCHIVE_LISTIBertForMaskedLMIBertForMultipleChoiceIBertForQuestionAnsweringIBertForSequenceClassificationIBertForTokenClassification
IBertModelIBertPreTrainedModel%IDEFICS_PRETRAINED_MODEL_ARCHIVE_LISTIdeficsForVisionText2TextIdeficsModelIdeficsPreTrainedModelIdeficsProcessor&IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LISTImageGPTForCausalImageModelingImageGPTForImageClassificationImageGPTModelImageGPTPreTrainedModelload_tf_weights_in_imagegptrP  &INFORMER_PRETRAINED_MODEL_ARCHIVE_LISTInformerForPredictionInformerModelInformerPreTrainedModelrQ  *INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST$InstructBlipForConditionalGenerationInstructBlipPreTrainedModelInstructBlipQFormerModelInstructBlipVisionModelrR  %JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LISTJukeboxModelJukeboxPreTrainedModelJukeboxPriorJukeboxVQVAE&LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LISTLayoutLMForMaskedLMLayoutLMForQuestionAnswering!LayoutLMForSequenceClassificationLayoutLMForTokenClassificationLayoutLMModelLayoutLMPreTrainedModel(LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LISTLayoutLMv2ForQuestionAnswering#LayoutLMv2ForSequenceClassification LayoutLMv2ForTokenClassificationLayoutLMv2ModelLayoutLMv2PreTrainedModel(LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LISTLayoutLMv3ForQuestionAnswering#LayoutLMv3ForSequenceClassification LayoutLMv3ForTokenClassificationLayoutLMv3ModelLayoutLMv3PreTrainedModel!LED_PRETRAINED_MODEL_ARCHIVE_LISTLEDForConditionalGenerationLEDForQuestionAnsweringLEDForSequenceClassificationLEDModelLEDPreTrainedModel#LEVIT_PRETRAINED_MODEL_ARCHIVE_LISTLevitForImageClassification&LevitForImageClassificationWithTeacher
LevitModelLevitPreTrainedModelrY  "LILT_PRETRAINED_MODEL_ARCHIVE_LISTLiltForQuestionAnsweringLiltForSequenceClassificationLiltForTokenClassification	LiltModelLiltPreTrainedModelLlamaForCausalLMLlamaForSequenceClassification
LlamaModelLlamaPreTrainedModel(LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LISTLongformerForMaskedLMLongformerForMultipleChoiceLongformerForQuestionAnswering#LongformerForSequenceClassification LongformerForTokenClassificationLongformerModelLongformerPreTrainedModelLongformerSelfAttentionr\  $LONGT5_PRETRAINED_MODEL_ARCHIVE_LISTLongT5EncoderModelLongT5ForConditionalGenerationLongT5ModelLongT5PreTrainedModelr]  "LUKE_PRETRAINED_MODEL_ARCHIVE_LISTLukeForEntityClassificationLukeForEntityPairClassificationLukeForEntitySpanClassificationLukeForMaskedLMLukeForMultipleChoiceLukeForQuestionAnsweringLukeForSequenceClassificationLukeForTokenClassification	LukeModelLukePreTrainedModelLxmertEncoderLxmertForPreTrainingLxmertForQuestionAnsweringLxmertModelLxmertPreTrainedModelLxmertVisualFeatureEncoderLxmertXLayer%M2M_100_PRETRAINED_MODEL_ARCHIVE_LISTM2M100ForConditionalGenerationM2M100ModelM2M100PreTrainedModelMarianForCausalLMMarianModelMarianMTModel&MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LISTMarkupLMForQuestionAnswering!MarkupLMForSequenceClassificationMarkupLMForTokenClassificationMarkupLMModelMarkupLMPreTrainedModel)MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST#Mask2FormerForUniversalSegmentationMask2FormerModelMask2FormerPreTrainedModel(MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST!MaskFormerForInstanceSegmentationMaskFormerModelMaskFormerPreTrainedModelMaskFormerSwinBackboneMBartForCausalLMMBartForConditionalGenerationMBartForQuestionAnsweringMBartForSequenceClassification
MBartModelMBartPreTrainedModelrf  "MEGA_PRETRAINED_MODEL_ARCHIVE_LISTMegaForCausalLMMegaForMaskedLMMegaForMultipleChoiceMegaForQuestionAnsweringMegaForSequenceClassificationMegaForTokenClassification	MegaModelMegaPreTrainedModelrg  +MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LISTMegatronBertForCausalLMMegatronBertForMaskedLMMegatronBertForMultipleChoice%MegatronBertForNextSentencePredictionMegatronBertForPreTraining MegatronBertForQuestionAnswering%MegatronBertForSequenceClassification"MegatronBertForTokenClassificationMegatronBertModelMegatronBertPreTrainedModelrh  %MGP_STR_PRETRAINED_MODEL_ARCHIVE_LISTMgpstrForSceneTextRecognitionMgpstrModelMgpstrPreTrainedModelri  MistralForCausalLM MistralForSequenceClassificationMistralModelMistralPreTrainedModel(MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LISTMobileBertForMaskedLMMobileBertForMultipleChoice#MobileBertForNextSentencePredictionMobileBertForPreTrainingMobileBertForQuestionAnswering#MobileBertForSequenceClassification MobileBertForTokenClassificationMobileBertLayerMobileBertModelMobileBertPreTrainedModelload_tf_weights_in_mobilebert*MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST!MobileNetV1ForImageClassificationMobileNetV1ModelMobileNetV1PreTrainedModelload_tf_weights_in_mobilenet_v1*MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST!MobileNetV2ForImageClassification"MobileNetV2ForSemanticSegmentationMobileNetV2ModelMobileNetV2PreTrainedModelload_tf_weights_in_mobilenet_v2'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LISTMobileViTForImageClassification MobileViTForSemanticSegmentationMobileViTModelMobileViTPreTrainedModelro  )MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST!MobileViTV2ForImageClassification"MobileViTV2ForSemanticSegmentationMobileViTV2ModelMobileViTV2PreTrainedModel#MPNET_PRETRAINED_MODEL_ARCHIVE_LISTMPNetForMaskedLMMPNetForMultipleChoiceMPNetForQuestionAnsweringMPNetForSequenceClassificationMPNetForTokenClassification
MPNetLayer
MPNetModelMPNetPreTrainedModelrq  !MPT_PRETRAINED_MODEL_ARCHIVE_LISTMptForCausalLMMptForQuestionAnsweringMptForSequenceClassificationMptForTokenClassificationMptModelMptPreTrainedModelrr  !MRA_PRETRAINED_MODEL_ARCHIVE_LISTMraForMaskedLMMraForMultipleChoiceMraForQuestionAnsweringMraForSequenceClassificationMraForTokenClassificationMraModelMraPreTrainedModelMT5EncoderModelMT5ForConditionalGenerationMT5ForQuestionAnsweringMT5ForSequenceClassificationMT5ModelMT5PreTrainedModelrt  &MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LISTMusicgenForCausalLM MusicgenForConditionalGenerationMusicgenModelMusicgenPreTrainedModelMusicgenProcessor!MVP_PRETRAINED_MODEL_ARCHIVE_LISTMvpForCausalLMMvpForConditionalGenerationMvpForQuestionAnsweringMvpForSequenceClassificationMvpModelMvpPreTrainedModelrv  !NAT_PRETRAINED_MODEL_ARCHIVE_LISTNatBackboneNatForImageClassificationNatModelNatPreTrainedModelrw  #NEZHA_PRETRAINED_MODEL_ARCHIVE_LISTNezhaForMaskedLMNezhaForMultipleChoiceNezhaForNextSentencePredictionNezhaForPreTrainingNezhaForQuestionAnsweringNezhaForSequenceClassificationNezhaForTokenClassification
NezhaModelNezhaPreTrainedModelry  &NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LISTNllbMoeForConditionalGenerationNllbMoeModelNllbMoePreTrainedModelNllbMoeSparseMLPNllbMoeTop2Routerr{  +NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LISTNystromformerForMaskedLMNystromformerForMultipleChoice!NystromformerForQuestionAnswering&NystromformerForSequenceClassification#NystromformerForTokenClassificationNystromformerLayerNystromformerModelNystromformerPreTrainedModel'ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST!OneFormerForUniversalSegmentationOneFormerModelOneFormerPreTrainedModel(OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LISTOpenAIGPTDoubleHeadsModel"OpenAIGPTForSequenceClassificationOpenAIGPTLMHeadModelOpenAIGPTModelOpenAIGPTPreTrainedModelload_tf_weights_in_openai_gptr~  !OPT_PRETRAINED_MODEL_ARCHIVE_LISTOPTForCausalLMOPTForQuestionAnsweringOPTForSequenceClassificationOPTModelOPTPreTrainedModel$OWLVIT_PRETRAINED_MODEL_ARCHIVE_LISTOwlViTForObjectDetectionOwlViTModelOwlViTPreTrainedModelOwlViTTextModelOwlViTVisionModelPegasusForCausalLMPegasusForConditionalGenerationPegasusModelPegasusPreTrainedModelr  'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST PegasusXForConditionalGenerationPegasusXModelPegasusXPreTrainedModel'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST-PerceiverForImageClassificationConvProcessing&PerceiverForImageClassificationFourier&PerceiverForImageClassificationLearnedPerceiverForMaskedLM"PerceiverForMultimodalAutoencodingPerceiverForOpticalFlow"PerceiverForSequenceClassificationPerceiverLayerPerceiverModelPerceiverPreTrainedModelr  PersimmonForCausalLM"PersimmonForSequenceClassificationPersimmonModelPersimmonPreTrainedModel(PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST"Pix2StructForConditionalGenerationPix2StructPreTrainedModelPix2StructTextModelPix2StructVisionModel$PLBART_PRETRAINED_MODEL_ARCHIVE_LISTPLBartForCausalLMPLBartForConditionalGenerationPLBartForSequenceClassificationPLBartModelPLBartPreTrainedModel(POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST PoolFormerForImageClassificationPoolFormerModelPoolFormerPreTrainedModelr  'POP2PIANO_PRETRAINED_MODEL_ARCHIVE_LIST!Pop2PianoForConditionalGenerationPop2PianoPreTrainedModelr  (PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LISTProphetNetDecoderProphetNetEncoderProphetNetForCausalLM"ProphetNetForConditionalGenerationProphetNetModelProphetNetPreTrainedModel!PVT_PRETRAINED_MODEL_ARCHIVE_LISTPvtForImageClassificationPvtModelPvtPreTrainedModelr  %QDQBERT_PRETRAINED_MODEL_ARCHIVE_LISTQDQBertForMaskedLMQDQBertForMultipleChoice QDQBertForNextSentencePredictionQDQBertForQuestionAnswering QDQBertForSequenceClassificationQDQBertForTokenClassificationQDQBertLayerQDQBertLMHeadModelQDQBertModelQDQBertPreTrainedModelload_tf_weights_in_qdqbertr  RagModelRagPreTrainedModelRagSequenceForGenerationRagTokenForGeneration#REALM_PRETRAINED_MODEL_ARCHIVE_LISTRealmEmbedderRealmForOpenQARealmKnowledgeAugEncoderRealmPreTrainedModelRealmReaderRealmRetrieverRealmScorerload_tf_weights_in_realm&REFORMER_PRETRAINED_MODEL_ARCHIVE_LISTReformerAttentionReformerForMaskedLMReformerForQuestionAnswering!ReformerForSequenceClassificationReformerLayerReformerModelReformerModelWithLMHeadReformerPreTrainedModelr  $REGNET_PRETRAINED_MODEL_ARCHIVE_LISTRegNetForImageClassificationRegNetModelRegNetPreTrainedModel%REMBERT_PRETRAINED_MODEL_ARCHIVE_LISTRemBertForCausalLMRemBertForMaskedLMRemBertForMultipleChoiceRemBertForQuestionAnswering RemBertForSequenceClassificationRemBertForTokenClassificationRemBertLayerRemBertModelRemBertPreTrainedModelload_tf_weights_in_rembertr  $RESNET_PRETRAINED_MODEL_ARCHIVE_LISTResNetBackboneResNetForImageClassificationResNetModelResNetPreTrainedModel%ROBERTA_PRETRAINED_MODEL_ARCHIVE_LISTRobertaForCausalLMRobertaForMaskedLMRobertaForMultipleChoiceRobertaForQuestionAnswering RobertaForSequenceClassificationRobertaForTokenClassificationRobertaModelRobertaPreTrainedModelr  2ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LISTRobertaPreLayerNormForCausalLMRobertaPreLayerNormForMaskedLM$RobertaPreLayerNormForMultipleChoice'RobertaPreLayerNormForQuestionAnswering,RobertaPreLayerNormForSequenceClassification)RobertaPreLayerNormForTokenClassificationRobertaPreLayerNormModel"RobertaPreLayerNormPreTrainedModelr  &ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LISTRoCBertForCausalLMRoCBertForMaskedLMRoCBertForMultipleChoiceRoCBertForPreTrainingRoCBertForQuestionAnswering RoCBertForSequenceClassificationRoCBertForTokenClassificationRoCBertLayerRoCBertModelRoCBertPreTrainedModelload_tf_weights_in_roc_bert&ROFORMER_PRETRAINED_MODEL_ARCHIVE_LISTRoFormerForCausalLMRoFormerForMaskedLMRoFormerForMultipleChoiceRoFormerForQuestionAnswering!RoFormerForSequenceClassificationRoFormerForTokenClassificationRoFormerLayerRoFormerModelRoFormerPreTrainedModelload_tf_weights_in_roformerr  "RWKV_PRETRAINED_MODEL_ARCHIVE_LISTRwkvForCausalLM	RwkvModelRwkvPreTrainedModel!SAM_PRETRAINED_MODEL_ARCHIVE_LISTSamModelSamPreTrainedModel'SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LISTSegformerDecodeHeadSegformerForImageClassification SegformerForSemanticSegmentationSegformerLayerSegformerModelSegformerPreTrainedModelr  !SEW_PRETRAINED_MODEL_ARCHIVE_LIST	SEWForCTCSEWForSequenceClassificationSEWModelSEWPreTrainedModelr  #SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST
SEWDForCTCSEWDForSequenceClassification	SEWDModelSEWDPreTrainedModelr  SpeechEncoderDecoderModel,SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST#Speech2TextForConditionalGenerationSpeech2TextModelSpeech2TextPreTrainedModelr  Speech2Text2ForCausalLMSpeech2Text2PreTrainedModel&SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LISTSpeechT5ForSpeechToSpeechSpeechT5ForSpeechToTextSpeechT5ForTextToSpeechSpeechT5HifiGanSpeechT5ModelSpeechT5PreTrainedModel&SPLINTER_PRETRAINED_MODEL_ARCHIVE_LISTSplinterForPreTrainingSplinterForQuestionAnsweringSplinterLayerSplinterModelSplinterPreTrainedModel)SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LISTSqueezeBertForMaskedLMSqueezeBertForMultipleChoiceSqueezeBertForQuestionAnswering$SqueezeBertForSequenceClassification!SqueezeBertForTokenClassificationSqueezeBertModelSqueezeBertModuleSqueezeBertPreTrainedModelr  )SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST!SwiftFormerForImageClassificationSwiftFormerModelSwiftFormerPreTrainedModelr  "SWIN_PRETRAINED_MODEL_ARCHIVE_LISTSwinBackboneSwinForImageClassificationSwinForMaskedImageModeling	SwinModelSwinPreTrainedModel%SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LISTSwin2SRForImageSuperResolutionSwin2SRModelSwin2SRPreTrainedModelr  $SWINV2_PRETRAINED_MODEL_ARCHIVE_LISTSwinv2ForImageClassificationSwinv2ForMaskedImageModelingSwinv2ModelSwinv2PreTrainedModelr  1SWITCH_TRANSFORMERS_PRETRAINED_MODEL_ARCHIVE_LISTSwitchTransformersEncoderModel*SwitchTransformersForConditionalGenerationSwitchTransformersModel!SwitchTransformersPreTrainedModelSwitchTransformersSparseMLPSwitchTransformersTop1Router T5_PRETRAINED_MODEL_ARCHIVE_LISTT5EncoderModelT5ForConditionalGenerationT5ForQuestionAnsweringT5ForSequenceClassificationT5ModelT5PreTrainedModelload_tf_weights_in_t5r  /TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST"TableTransformerForObjectDetectionTableTransformerModelTableTransformerPreTrainedModelr  #TAPAS_PRETRAINED_MODEL_ARCHIVE_LISTTapasForMaskedLMTapasForQuestionAnsweringTapasForSequenceClassification
TapasModelTapasPreTrainedModelload_tf_weights_in_tapasr  5TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST"TimeSeriesTransformerForPredictionTimeSeriesTransformerModel$TimeSeriesTransformerPreTrainedModelr  )TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST!TimesformerForVideoClassificationTimesformerModelTimesformerPreTrainedModelr  TimmBackboner  (TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LISTAdaptiveEmbedding"TransfoXLForSequenceClassificationTransfoXLLMHeadModelTransfoXLModelTransfoXLPreTrainedModelload_tf_weights_in_transfo_xlr  #TROCR_PRETRAINED_MODEL_ARCHIVE_LISTTrOCRForCausalLMTrOCRPreTrainedModel"TVLT_PRETRAINED_MODEL_ARCHIVE_LIST TvltForAudioVisualClassificationTvltForPreTraining	TvltModelTvltPreTrainedModelr  UMT5EncoderModelUMT5ForConditionalGenerationUMT5ForQuestionAnsweringUMT5ForSequenceClassification	UMT5ModelUMT5PreTrainedModelr  'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LISTUniSpeechForCTCUniSpeechForPreTraining"UniSpeechForSequenceClassificationUniSpeechModelUniSpeechPreTrainedModelr  +UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST'UniSpeechSatForAudioFrameClassificationUniSpeechSatForCTCUniSpeechSatForPreTraining%UniSpeechSatForSequenceClassificationUniSpeechSatForXVectorUniSpeechSatModelUniSpeechSatPreTrainedModelr  UperNetForSemanticSegmentationUperNetPreTrainedModel&VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LISTVideoMAEForPreTrainingVideoMAEForVideoClassificationVideoMAEModelVideoMAEPreTrainedModel"VILT_PRETRAINED_MODEL_ARCHIVE_LISTViltForImageAndTextRetrieval"ViltForImagesAndTextClassificationViltForMaskedLMViltForQuestionAnsweringViltForTokenClassification	ViltLayer	ViltModelViltPreTrainedModelr  VisionEncoderDecoderModelr  VisionTextDualEncoderModelr  )VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LISTVisualBertForMultipleChoiceVisualBertForPreTrainingVisualBertForQuestionAnswering$VisualBertForRegionToPhraseAlignmentVisualBertForVisualReasoningVisualBertLayerVisualBertModelVisualBertPreTrainedModel!VIT_PRETRAINED_MODEL_ARCHIVE_LISTViTForImageClassificationViTForMaskedImageModelingViTModelViTPreTrainedModel(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LISTViTHybridForImageClassificationViTHybridModelViTHybridPreTrainedModelr  %VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LISTViTMAEForPreTrainingViTMAELayerViTMAEModelViTMAEPreTrainedModelr  %VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LISTViTMSNForImageClassificationViTMSNModelViTMSNPreTrainedModelr  $VITDET_PRETRAINED_MODEL_ARCHIVE_LISTVitDetBackboneVitDetModelVitDetPreTrainedModel&VITMATTE_PRETRAINED_MODEL_ARCHIVE_LISTVitMatteForImageMattingVitMattePreTrainedModelr  "VITS_PRETRAINED_MODEL_ARCHIVE_LIST	VitsModelVitsPreTrainedModel#VIVIT_PRETRAINED_MODEL_ARCHIVE_LISTVivitForVideoClassification
VivitModelVivitPreTrainedModelr  )WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST#Wav2Vec2ForAudioFrameClassificationWav2Vec2ForCTCWav2Vec2ForMaskedLMWav2Vec2ForPreTraining!Wav2Vec2ForSequenceClassificationWav2Vec2ForXVectorWav2Vec2ModelWav2Vec2PreTrainedModelr  0WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,Wav2Vec2ConformerForAudioFrameClassificationWav2Vec2ConformerForCTCWav2Vec2ConformerForPreTraining*Wav2Vec2ConformerForSequenceClassificationWav2Vec2ConformerForXVectorWav2Vec2ConformerModel Wav2Vec2ConformerPreTrainedModelr  #WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST WavLMForAudioFrameClassificationWavLMForCTCWavLMForSequenceClassificationWavLMForXVector
WavLMModelWavLMPreTrainedModel%WHISPER_PRETRAINED_MODEL_ARCHIVE_LISTWhisperForAudioClassificationWhisperForConditionalGenerationWhisperModelWhisperPreTrainedModelr  #XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST
XCLIPModelXCLIPPreTrainedModelXCLIPTextModelXCLIPVisionModel"XGLM_PRETRAINED_MODEL_ARCHIVE_LISTXGLMForCausalLM	XGLMModelXGLMPreTrainedModelr  !XLM_PRETRAINED_MODEL_ARCHIVE_LISTXLMForMultipleChoiceXLMForQuestionAnsweringXLMForQuestionAnsweringSimpleXLMForSequenceClassificationXLMForTokenClassificationXLMModelXLMPreTrainedModelXLMWithLMHeadModel,XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LISTXLMProphetNetDecoderXLMProphetNetEncoderXLMProphetNetForCausalLM%XLMProphetNetForConditionalGenerationXLMProphetNetModelXLMProphetNetPreTrainedModel)XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LISTXLMRobertaForCausalLMXLMRobertaForMaskedLMXLMRobertaForMultipleChoiceXLMRobertaForQuestionAnswering#XLMRobertaForSequenceClassification XLMRobertaForTokenClassificationXLMRobertaModelXLMRobertaPreTrainedModelr  ,XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LISTXLMRobertaXLForCausalLMXLMRobertaXLForMaskedLMXLMRobertaXLForMultipleChoice XLMRobertaXLForQuestionAnswering%XLMRobertaXLForSequenceClassification"XLMRobertaXLForTokenClassificationXLMRobertaXLModelXLMRobertaXLPreTrainedModel#XLNET_PRETRAINED_MODEL_ARCHIVE_LISTXLNetForMultipleChoiceXLNetForQuestionAnsweringXLNetForQuestionAnsweringSimpleXLNetForSequenceClassificationXLNetForTokenClassificationXLNetLMHeadModel
XLNetModelXLNetPreTrainedModelload_tf_weights_in_xlnetr  "XMOD_PRETRAINED_MODEL_ARCHIVE_LISTXmodForCausalLMXmodForMaskedLMXmodForMultipleChoiceXmodForQuestionAnsweringXmodForSequenceClassificationXmodForTokenClassification	XmodModelXmodPreTrainedModel#YOLOS_PRETRAINED_MODEL_ARCHIVE_LISTYolosForObjectDetection
YolosModelYolosPreTrainedModelr  "YOSO_PRETRAINED_MODEL_ARCHIVE_LISTYosoForMaskedLMYosoForMultipleChoiceYosoForQuestionAnsweringYosoForSequenceClassificationYosoForTokenClassification	YosoLayer	YosoModelYosoPreTrainedModel	AdafactorAdamWget_constant_schedule!get_constant_schedule_with_warmupget_cosine_schedule_with_warmup2get_cosine_with_hard_restarts_schedule_with_warmupget_inverse_sqrt_scheduleget_linear_schedule_with_warmup)get_polynomial_decay_schedule_with_warmupget_scheduleroptimizationConv1Dapply_chunking_to_forwardprune_layerpytorch_utilsZ	sagemakerZtime_series_utilsTrainertrainertorch_distributed_zero_firsttrainer_pt_utilsSeq2SeqTrainertrainer_seq2seq)dummy_tf_objectsc                 C   s   g | ]}| d s|qS r  r  r  r  r  r  r  l  s     
 zutils.dummy_tf_objectsZactivations_tfTensorFlowBenchmarkArgumentszbenchmark.benchmark_args_tfTensorFlowBenchmarkzbenchmark.benchmark_tfTFForcedBOSTokenLogitsProcessorTFForcedEOSTokenLogitsProcessorTFForceTokensLogitsProcessorTFGenerationMixinTFLogitsProcessorTFLogitsProcessorListTFLogitsWarperTFMinLengthLogitsProcessorTFNoBadWordsLogitsProcessorTFNoRepeatNGramLogitsProcessor"TFRepetitionPenaltyLogitsProcessor&TFSuppressTokensAtBeginLogitsProcessorTFSuppressTokensLogitsProcessorTFTemperatureLogitsWarperTFTopKLogitsWarperTFTopPLogitsWarpertf_top_k_top_p_filteringZgeneration_tf_utilsKerasMetricCallbackPushToHubCallbackkeras_callbacksZmodeling_tf_outputsTFPreTrainedModelTFSequenceSummaryTFSharedEmbeddings
shape_listmodeling_tf_utils'TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LISTTFAlbertForMaskedLMTFAlbertForMultipleChoiceTFAlbertForPreTrainingTFAlbertForQuestionAnswering!TFAlbertForSequenceClassificationTFAlbertForTokenClassificationTFAlbertMainLayerTFAlbertModelTFAlbertPreTrainedModel)TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPINGTF_MODEL_FOR_CAUSAL_LM_MAPPING0TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING)TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING*TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPINGTF_MODEL_FOR_MASKED_LM_MAPPING$TF_MODEL_FOR_MASK_GENERATION_MAPPING$TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING-TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING TF_MODEL_FOR_PRETRAINING_MAPPING'TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING*TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING)TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING%TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING-TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING"TF_MODEL_FOR_TEXT_ENCODING_MAPPING)TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING!TF_MODEL_FOR_VISION_2_SEQ_MAPPING3TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPINGTF_MODEL_MAPPINGTF_MODEL_WITH_LM_HEAD_MAPPINGTFAutoModel!TFAutoModelForAudioClassificationTFAutoModelForCausalLM'TFAutoModelForDocumentQuestionAnswering!TFAutoModelForImageClassification!TFAutoModelForMaskedImageModelingTFAutoModelForMaskedLMTFAutoModelForMaskGenerationTFAutoModelForMultipleChoice$TFAutoModelForNextSentencePredictionTFAutoModelForPreTrainingTFAutoModelForQuestionAnswering"TFAutoModelForSemanticSegmentationTFAutoModelForSeq2SeqLM$TFAutoModelForSequenceClassificationTFAutoModelForSpeechSeq2Seq$TFAutoModelForTableQuestionAnsweringTFAutoModelForTextEncoding!TFAutoModelForTokenClassificationTFAutoModelForVision2Seq)TFAutoModelForZeroShotImageClassificationTFAutoModelWithLMHeadTFBartForConditionalGenerationTFBartForSequenceClassificationTFBartModelTFBartPretrainedModel%TF_BERT_PRETRAINED_MODEL_ARCHIVE_LISTTFBertEmbeddingsTFBertForMaskedLMTFBertForMultipleChoiceTFBertForNextSentencePredictionTFBertForPreTrainingTFBertForQuestionAnsweringTFBertForSequenceClassificationTFBertForTokenClassificationTFBertLMHeadModelTFBertMainLayerTFBertModelTFBertPreTrainedModel$TFBlenderbotForConditionalGenerationTFBlenderbotModelTFBlenderbotPreTrainedModel)TFBlenderbotSmallForConditionalGenerationTFBlenderbotSmallModel TFBlenderbotSmallPreTrainedModel%TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LISTTFBlipForConditionalGenerationTFBlipForImageTextRetrievalTFBlipForQuestionAnsweringTFBlipModelTFBlipPreTrainedModelTFBlipTextModelTFBlipVisionModel*TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LISTTFCamembertForCausalLMTFCamembertForMaskedLMTFCamembertForMultipleChoiceTFCamembertForQuestionAnswering$TFCamembertForSequenceClassification!TFCamembertForTokenClassificationTFCamembertModelTFCamembertPreTrainedModel%TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LISTTFCLIPModelTFCLIPPreTrainedModelTFCLIPTextModelTFCLIPVisionModel)TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LISTTFConvBertForMaskedLMTFConvBertForMultipleChoiceTFConvBertForQuestionAnswering#TFConvBertForSequenceClassification TFConvBertForTokenClassificationTFConvBertLayerTFConvBertModelTFConvBertPreTrainedModel TFConvNextForImageClassificationTFConvNextModelTFConvNextPreTrainedModel%TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LISTTFCTRLForSequenceClassificationTFCTRLLMHeadModelTFCTRLModelTFCTRLPreTrainedModel$TF_CVT_PRETRAINED_MODEL_ARCHIVE_LISTTFCvtForImageClassification
TFCvtModelTFCvtPreTrainedModel&TFData2VecVisionForImageClassification'TFData2VecVisionForSemanticSegmentationTFData2VecVisionModelTFData2VecVisionPreTrainedModel(TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LISTTFDebertaForMaskedLMTFDebertaForQuestionAnswering"TFDebertaForSequenceClassificationTFDebertaForTokenClassificationTFDebertaModelTFDebertaPreTrainedModel+TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LISTTFDebertaV2ForMaskedLMTFDebertaV2ForMultipleChoiceTFDebertaV2ForQuestionAnswering$TFDebertaV2ForSequenceClassification!TFDebertaV2ForTokenClassificationTFDebertaV2ModelTFDebertaV2PreTrainedModel%TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LISTTFDeiTForImageClassification'TFDeiTForImageClassificationWithTeacherTFDeiTForMaskedImageModelingTFDeiTModelTFDeiTPreTrainedModel+TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LISTTFDistilBertForMaskedLMTFDistilBertForMultipleChoice TFDistilBertForQuestionAnswering%TFDistilBertForSequenceClassification"TFDistilBertForTokenClassificationTFDistilBertMainLayerTFDistilBertModelTFDistilBertPreTrainedModel4TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST5TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST+TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LISTTFDPRContextEncoderTFDPRPretrainedContextEncoderTFDPRPretrainedQuestionEncoderTFDPRPretrainedReaderTFDPRQuestionEncoderTFDPRReader0TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST'TFEfficientFormerForImageClassification2TFEfficientFormerForImageClassificationWithTeacherTFEfficientFormerModel TFEfficientFormerPreTrainedModel(TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LISTTFElectraForMaskedLMTFElectraForMultipleChoiceTFElectraForPreTrainingTFElectraForQuestionAnswering"TFElectraForSequenceClassificationTFElectraForTokenClassificationTFElectraModelTFElectraPreTrainedModelTFEncoderDecoderModelTFEsmForMaskedLMTFEsmForSequenceClassificationTFEsmForTokenClassification
TFEsmModelTFEsmPreTrainedModel)TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LISTTFFlaubertForMultipleChoice$TFFlaubertForQuestionAnsweringSimple#TFFlaubertForSequenceClassification TFFlaubertForTokenClassificationTFFlaubertModelTFFlaubertPreTrainedModelTFFlaubertWithLMHeadModel'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LISTTFFunnelBaseModelTFFunnelForMaskedLMTFFunnelForMultipleChoiceTFFunnelForPreTrainingTFFunnelForQuestionAnswering!TFFunnelForSequenceClassificationTFFunnelForTokenClassificationTFFunnelModelTFFunnelPreTrainedModel%TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LISTTFGPT2DoubleHeadsModelTFGPT2ForSequenceClassificationTFGPT2LMHeadModelTFGPT2MainLayerTFGPT2ModelTFGPT2PreTrainedModelTFGPTJForCausalLMTFGPTJForQuestionAnsweringTFGPTJForSequenceClassificationTFGPTJModelTFGPTJPreTrainedModel)TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LISTTFGroupViTModelTFGroupViTPreTrainedModelTFGroupViTTextModelTFGroupViTVisionModel'TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LISTTFHubertForCTCTFHubertModelTFHubertPreTrainedModel)TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LISTTFLayoutLMForMaskedLMTFLayoutLMForQuestionAnswering#TFLayoutLMForSequenceClassification TFLayoutLMForTokenClassificationTFLayoutLMMainLayerTFLayoutLMModelTFLayoutLMPreTrainedModel+TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST TFLayoutLMv3ForQuestionAnswering%TFLayoutLMv3ForSequenceClassification"TFLayoutLMv3ForTokenClassificationTFLayoutLMv3ModelTFLayoutLMv3PreTrainedModelTFLEDForConditionalGeneration
TFLEDModelTFLEDPreTrainedModel+TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LISTTFLongformerForMaskedLMTFLongformerForMultipleChoice TFLongformerForQuestionAnswering%TFLongformerForSequenceClassification"TFLongformerForTokenClassificationTFLongformerModelTFLongformerPreTrainedModelTFLongformerSelfAttention'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LISTTFLxmertForPreTrainingTFLxmertMainLayerTFLxmertModelTFLxmertPreTrainedModelTFLxmertVisualFeatureEncoderTFMarianModelTFMarianMTModelTFMarianPreTrainedModelTFMBartForConditionalGenerationTFMBartModelTFMBartPreTrainedModel+TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LISTTFMobileBertForMaskedLMTFMobileBertForMultipleChoice%TFMobileBertForNextSentencePredictionTFMobileBertForPreTraining TFMobileBertForQuestionAnswering%TFMobileBertForSequenceClassification"TFMobileBertForTokenClassificationTFMobileBertMainLayerTFMobileBertModelTFMobileBertPreTrainedModel*TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST!TFMobileViTForImageClassification"TFMobileViTForSemanticSegmentationTFMobileViTModelTFMobileViTPreTrainedModel&TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LISTTFMPNetForMaskedLMTFMPNetForMultipleChoiceTFMPNetForQuestionAnswering TFMPNetForSequenceClassificationTFMPNetForTokenClassificationTFMPNetMainLayerTFMPNetModelTFMPNetPreTrainedModelTFMT5EncoderModelTFMT5ForConditionalGeneration
TFMT5Model+TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LISTTFOpenAIGPTDoubleHeadsModel$TFOpenAIGPTForSequenceClassificationTFOpenAIGPTLMHeadModelTFOpenAIGPTMainLayerTFOpenAIGPTModelTFOpenAIGPTPreTrainedModelTFOPTForCausalLM
TFOPTModelTFOPTPreTrainedModel!TFPegasusForConditionalGenerationTFPegasusModelTFPegasusPreTrainedModel
TFRagModelTFRagPreTrainedModelTFRagSequenceForGenerationTFRagTokenForGeneration'TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LISTTFRegNetForImageClassificationTFRegNetModelTFRegNetPreTrainedModel(TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LISTTFRemBertForCausalLMTFRemBertForMaskedLMTFRemBertForMultipleChoiceTFRemBertForQuestionAnswering"TFRemBertForSequenceClassificationTFRemBertForTokenClassificationTFRemBertLayerTFRemBertModelTFRemBertPreTrainedModel'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LISTTFResNetForImageClassificationTFResNetModelTFResNetPreTrainedModel(TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LISTTFRobertaForCausalLMTFRobertaForMaskedLMTFRobertaForMultipleChoiceTFRobertaForQuestionAnswering"TFRobertaForSequenceClassificationTFRobertaForTokenClassificationTFRobertaMainLayerTFRobertaModelTFRobertaPreTrainedModel5TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST TFRobertaPreLayerNormForCausalLM TFRobertaPreLayerNormForMaskedLM&TFRobertaPreLayerNormForMultipleChoice)TFRobertaPreLayerNormForQuestionAnswering.TFRobertaPreLayerNormForSequenceClassification+TFRobertaPreLayerNormForTokenClassificationTFRobertaPreLayerNormMainLayerTFRobertaPreLayerNormModel$TFRobertaPreLayerNormPreTrainedModel)TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LISTTFRoFormerForCausalLMTFRoFormerForMaskedLMTFRoFormerForMultipleChoiceTFRoFormerForQuestionAnswering#TFRoFormerForSequenceClassification TFRoFormerForTokenClassificationTFRoFormerLayerTFRoFormerModelTFRoFormerPreTrainedModel$TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST
TFSamModelTFSamPreTrainedModel*TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LISTTFSegformerDecodeHead!TFSegformerForImageClassification"TFSegformerForSemanticSegmentationTFSegformerModelTFSegformerPreTrainedModel/TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST%TFSpeech2TextForConditionalGenerationTFSpeech2TextModelTFSpeech2TextPreTrainedModel%TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LISTTFSwinForImageClassificationTFSwinForMaskedImageModelingTFSwinModelTFSwinPreTrainedModel#TF_T5_PRETRAINED_MODEL_ARCHIVE_LISTTFT5EncoderModelTFT5ForConditionalGeneration	TFT5ModelTFT5PreTrainedModel&TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LISTTFTapasForMaskedLMTFTapasForQuestionAnswering TFTapasForSequenceClassificationTFTapasModelTFTapasPreTrainedModel+TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LISTTFAdaptiveEmbedding$TFTransfoXLForSequenceClassificationTFTransfoXLLMHeadModelTFTransfoXLMainLayerTFTransfoXLModelTFTransfoXLPreTrainedModelTFVisionEncoderDecoderModelTFVisionTextDualEncoderModelTFViTForImageClassification
TFViTModelTFViTPreTrainedModelTFViTMAEForPreTrainingTFViTMAEModelTFViTMAEPreTrainedModel,TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LISTTFWav2Vec2ForCTC#TFWav2Vec2ForSequenceClassificationTFWav2Vec2ModelTFWav2Vec2PreTrainedModel(TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST!TFWhisperForConditionalGenerationTFWhisperModelTFWhisperPreTrainedModel%TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LISTTFXGLMForCausalLMTFXGLMModelTFXGLMPreTrainedModel$TF_XLM_PRETRAINED_MODEL_ARCHIVE_LISTTFXLMForMultipleChoiceTFXLMForQuestionAnsweringSimpleTFXLMForSequenceClassificationTFXLMForTokenClassificationTFXLMMainLayer
TFXLMModelTFXLMPreTrainedModelTFXLMWithLMHeadModel,TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LISTTFXLMRobertaForCausalLMTFXLMRobertaForMaskedLMTFXLMRobertaForMultipleChoice TFXLMRobertaForQuestionAnswering%TFXLMRobertaForSequenceClassification"TFXLMRobertaForTokenClassificationTFXLMRobertaModelTFXLMRobertaPreTrainedModel&TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LISTTFXLNetForMultipleChoice!TFXLNetForQuestionAnsweringSimple TFXLNetForSequenceClassificationTFXLNetForTokenClassificationTFXLNetLMHeadModelTFXLNetMainLayerTFXLNetModelTFXLNetPreTrainedModelAdamWeightDecayGradientAccumulatorWarmUpcreate_optimizeroptimization_tfZtf_utils	TFTrainer
trainer_tf)Fdummy_essentia_and_librosa_and_pretty_midi_and_scipy_and_torch_objectsc                 C   s   g | ]}| d s|qS r  r  r  r  r  r  r  0  s   
zLutils.dummy_essentia_and_librosa_and_pretty_midi_and_scipy_and_torch_objectsPop2PianoFeatureExtractorPop2PianoTokenizerPop2PianoProcessor)dummy_flax_objectsc                 C   s   g | ]}| d s|qS r  r  r  r  r  r  r  B  s    
 zutils.dummy_flax_objects!FlaxForcedBOSTokenLogitsProcessor!FlaxForcedEOSTokenLogitsProcessorFlaxForceTokensLogitsProcessorFlaxGenerationMixinFlaxLogitsProcessorFlaxLogitsProcessorListFlaxLogitsWarperFlaxMinLengthLogitsProcessorFlaxTemperatureLogitsWarper(FlaxSuppressTokensAtBeginLogitsProcessor!FlaxSuppressTokensLogitsProcessorFlaxTopKLogitsWarperFlaxTopPLogitsWarper#FlaxWhisperTimeStampLogitsProcessorZgeneration_flax_utilsZmodeling_flax_outputsFlaxPreTrainedModelmodeling_flax_utilsFlaxAlbertForMaskedLMFlaxAlbertForMultipleChoiceFlaxAlbertForPreTrainingFlaxAlbertForQuestionAnswering#FlaxAlbertForSequenceClassification FlaxAlbertForTokenClassificationFlaxAlbertModelFlaxAlbertPreTrainedModel+FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING FLAX_MODEL_FOR_CAUSAL_LM_MAPPING+FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING FLAX_MODEL_FOR_MASKED_LM_MAPPING&FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING/FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING"FLAX_MODEL_FOR_PRETRAINING_MAPPING)FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING+FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING'FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING+FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING#FLAX_MODEL_FOR_VISION_2_SEQ_MAPPINGFLAX_MODEL_MAPPINGFlaxAutoModelFlaxAutoModelForCausalLM#FlaxAutoModelForImageClassificationFlaxAutoModelForMaskedLMFlaxAutoModelForMultipleChoice&FlaxAutoModelForNextSentencePredictionFlaxAutoModelForPreTraining!FlaxAutoModelForQuestionAnsweringFlaxAutoModelForSeq2SeqLM&FlaxAutoModelForSequenceClassificationFlaxAutoModelForSpeechSeq2Seq#FlaxAutoModelForTokenClassificationFlaxAutoModelForVision2SeqFlaxBartDecoderPreTrainedModelFlaxBartForCausalLM FlaxBartForConditionalGenerationFlaxBartForQuestionAnswering!FlaxBartForSequenceClassificationFlaxBartModelFlaxBartPreTrainedModelFlaxBeitForImageClassificationFlaxBeitForMaskedImageModelingFlaxBeitModelFlaxBeitPreTrainedModelFlaxBertForCausalLMFlaxBertForMaskedLMFlaxBertForMultipleChoice!FlaxBertForNextSentencePredictionFlaxBertForPreTrainingFlaxBertForQuestionAnswering!FlaxBertForSequenceClassificationFlaxBertForTokenClassificationFlaxBertModelFlaxBertPreTrainedModelFlaxBigBirdForCausalLMFlaxBigBirdForMaskedLMFlaxBigBirdForMultipleChoiceFlaxBigBirdForPreTrainingFlaxBigBirdForQuestionAnswering$FlaxBigBirdForSequenceClassification!FlaxBigBirdForTokenClassificationFlaxBigBirdModelFlaxBigBirdPreTrainedModel&FlaxBlenderbotForConditionalGenerationFlaxBlenderbotModelFlaxBlenderbotPreTrainedModel+FlaxBlenderbotSmallForConditionalGenerationFlaxBlenderbotSmallModel"FlaxBlenderbotSmallPreTrainedModelFlaxBloomForCausalLMFlaxBloomModelFlaxBloomPreTrainedModelFlaxCLIPModelFlaxCLIPPreTrainedModelFlaxCLIPTextModelFlaxCLIPTextPreTrainedModelFlaxCLIPTextModelWithProjectionFlaxCLIPVisionModelFlaxCLIPVisionPreTrainedModelFlaxDistilBertForMaskedLMFlaxDistilBertForMultipleChoice"FlaxDistilBertForQuestionAnswering'FlaxDistilBertForSequenceClassification$FlaxDistilBertForTokenClassificationFlaxDistilBertModelFlaxDistilBertPreTrainedModelFlaxElectraForCausalLMFlaxElectraForMaskedLMFlaxElectraForMultipleChoiceFlaxElectraForPreTrainingFlaxElectraForQuestionAnswering$FlaxElectraForSequenceClassification!FlaxElectraForTokenClassificationFlaxElectraModelFlaxElectraPreTrainedModelFlaxEncoderDecoderModelFlaxGPT2LMHeadModelFlaxGPT2ModelFlaxGPT2PreTrainedModelFlaxGPTNeoForCausalLMFlaxGPTNeoModelFlaxGPTNeoPreTrainedModelFlaxGPTJForCausalLMFlaxGPTJModelFlaxGPTJPreTrainedModel"FlaxLongT5ForConditionalGenerationFlaxLongT5ModelFlaxLongT5PreTrainedModelFlaxMarianModelFlaxMarianMTModelFlaxMarianPreTrainedModel!FlaxMBartForConditionalGenerationFlaxMBartForQuestionAnswering"FlaxMBartForSequenceClassificationFlaxMBartModelFlaxMBartPreTrainedModelFlaxMT5EncoderModelFlaxMT5ForConditionalGenerationFlaxMT5ModelFlaxOPTForCausalLMFlaxOPTModelFlaxOPTPreTrainedModel#FlaxPegasusForConditionalGenerationFlaxPegasusModelFlaxPegasusPreTrainedModel FlaxRegNetForImageClassificationFlaxRegNetModelFlaxRegNetPreTrainedModel FlaxResNetForImageClassificationFlaxResNetModelFlaxResNetPreTrainedModelFlaxRobertaForCausalLMFlaxRobertaForMaskedLMFlaxRobertaForMultipleChoiceFlaxRobertaForQuestionAnswering$FlaxRobertaForSequenceClassification!FlaxRobertaForTokenClassificationFlaxRobertaModelFlaxRobertaPreTrainedModel"FlaxRobertaPreLayerNormForCausalLM"FlaxRobertaPreLayerNormForMaskedLM(FlaxRobertaPreLayerNormForMultipleChoice+FlaxRobertaPreLayerNormForQuestionAnswering0FlaxRobertaPreLayerNormForSequenceClassification-FlaxRobertaPreLayerNormForTokenClassificationFlaxRobertaPreLayerNormModel&FlaxRobertaPreLayerNormPreTrainedModelFlaxRoFormerForMaskedLMFlaxRoFormerForMultipleChoice FlaxRoFormerForQuestionAnswering%FlaxRoFormerForSequenceClassification"FlaxRoFormerForTokenClassificationFlaxRoFormerModelFlaxRoFormerPreTrainedModelFlaxSpeechEncoderDecoderModelFlaxT5EncoderModelFlaxT5ForConditionalGenerationFlaxT5ModelFlaxT5PreTrainedModelFlaxVisionEncoderDecoderModelFlaxVisionTextDualEncoderModelFlaxViTForImageClassificationFlaxViTModelFlaxViTPreTrainedModelFlaxWav2Vec2ForCTCFlaxWav2Vec2ForPreTrainingFlaxWav2Vec2ModelFlaxWav2Vec2PreTrainedModel#FlaxWhisperForConditionalGenerationFlaxWhisperModelFlaxWhisperPreTrainedModel!FlaxWhisperForAudioClassificationFlaxXGLMForCausalLMFlaxXGLMModelFlaxXGLMPreTrainedModel.FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LISTFlaxXLMRobertaForMaskedLMFlaxXLMRobertaForMultipleChoice"FlaxXLMRobertaForQuestionAnswering'FlaxXLMRobertaForSequenceClassification$FlaxXLMRobertaForTokenClassificationFlaxXLMRobertaModelFlaxXLMRobertaForCausalLMFlaxXLMRobertaPreTrainedModel)r   )r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   )
r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   )r5   )r6   r7   )r8   r9   r:   )r;   )	r<   r=   r>   r?   r@   rA   rB   rC   rD   )rE   )rF   rG   rH   rI   rJ   rK   rL   )rM   rN   )rO   rP   rQ   rR   rS   )rT   rU   rV   rW   rX   )rY   rZ   )r[   r\   r]   r^   r_   r`   ra   rb   rc   rd   re   rf   )rg   rh   )ri   rj   rk   rl   rm   )rn   ro   )rp   rq   )rr   rs   rt   ru   rv   )rw   )rx   ry   rz   )r{   )r|   r}   )r~   r   )r   r   r   )r   r   )r   r   r   )r   r   r   )r   r   r   r   r   )r   r   r   r   r   )r   r   )r   r   r   r   r   )r   r   r   )r   )r   r   )r   r   r   )r   r   r   r   r   )r   r   r   r   r   )r   r   r   r   r   r   )r   r   r   r   r   )r   r   r   )r   r   )r   r   r   )r   r   )r   r   )r   r   r   )r   r   r   )r   r   )r   r   r   r   r   )r   r   r   )r   r   )r   r   )r   r   )r   r   )r   r   r   r   )r   )r   r   )r   r   r   )r   )r   r   )r   r   )r   r   )r   r   )r   r   )r   r   )r   r   r   )r   r   r   )r   r   r   r   r   r   )r  r  )r  r  )r  r  )r  r  r	  )r
  r  r  )r  )r  r  )r  r  )r  r  r  )r  r  )r  r  r  )r  r  r  r  r  r  )r   r!  )r"  r#  )r$  r%  r&  )r'  r(  r)  )r*  r+  r,  r-  )r.  r/  )r0  r1  r2  )r3  r4  )r5  r6  )r7  r8  )r9  r:  )r;  r<  )r=  r>  r?  )r@  rA  )rB  rC  rD  rE  )rF  )rG  rH  )rI  rJ  )rK  rL  )rM  rN  )rO  rP  )rQ  rR  rS  rT  rU  )rV  rW  rX  rY  rZ  )r[  r\  r]  )r^  r_  r`  ra  rb  rc  )rd  re  rf  rg  rh  ri  )rj  )rk  rl  rm  )rn  ro  )rp  rq  )rr  rs  )rt  ru  rv  )rw  rx  )ry  rz  r{  )r|  r}  r~  )r  r  )r  )r  r  r  r  r  )r  r  )r  r  r  )r  )r  r  )r  r  )r  r  r  r  )r  r  )r  r  r  )r  r  )r  r  )r  r  )r  r  )r  r  r  )r  r  )r  r  )r  )r  r  r  )r  r  )r  r  )r  r  )r  r  )r  )r  r  )r  r  r  )r  r  r  )r  )r  r  r  r  r  )r  r  r  )r  r  )r  r  r  )r  r  )r  )r  r  r  r  r  )r  r  )r  r  )r  r  )r  r  r  )r  r  )r  r  )r  r  r  )r  r  r  )r  r  )r  r  )r  r  )r  r  )r  r  r  )r  r  )r  r  r  )r  r  r  )r  r  )r  r  r  r  r   r  )r  r  )r  r  )r  r  )r  )r	  r
  r  )r  r  r  r  )r  r  r  r  r  r  )r  r  r  )r  r  r  )r  r  )r  r  )r   r!  )r"  r#  )r$  r%  )r&  r'  )r(  r)  )r*  r+  r,  )r-  r.  )r/  r0  )r1  )r2  r3  r4  r5  )r6  r7  r8  )r9  r:  r;  r<  )r=  )r>  r?  )r@  rA  )rB  )rC  rD  )rE  rF  rG  rH  rI  )rJ  )rK  rL  )rM  rN  )rO  rP  )rQ  rR  )rS  rT  )rU  rV  )rW  rX  )rY  rZ  )r[  r\  r]  )r^  r_  )r`  ra  rb  rc  rd  re  )rf  rg  )rh  )ri  )rj  rk  )rl  rm  rn  ro  rp  )rq  rr  rs  rt  ru  )rv  rw  )rx  ry  rz  )r{  r|  )r}  r~  )r  r  )r  r  )r  r  )r  r  )r  r  )#r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  )r  )r  )r  r  r  r  r  r  )
r  r  r  r  r  r  r  r  r  r  )r  r  r  r  r  r  r  )r  r  r  r  r  )r  )r  )r  )(r  r  r  r  r  r  r  r  r  r  r  r  r  r   r  r  r  r	   r
   r  r  r  r  r  r   r   r  r   r   r   r   r   r   r  r  r  r  r   r   r   )r  r  )*)r  )r  )r  )r  )r  )r  )r  )r  )r  )r  )r  )r  )r  )r  )r  )r  )r  r  )r  )r  )r  )r  )r  )r  )r  )r  )r  )r  )r  )r  )r   )r  )r  )r  )r  )r  )r  )r  )r	  )r
  )r  )r  )r  )r  )r  )r  )r  )r  )r  )r  )r  r  r  )r  )r  )r  )r  )r  )r  )r  )r  )r   )r!  )r"  )r#  )r$  )r%  )r&  )r'  )r(  )r)  )r*  )r+  )r,  )r-  )r.  )r/  )r0  )r1  )r2  )r3  )r4  )r5  )r6  )r7  )r8  )r9  )r:  )r;  )r<  )r=  )r>  )rA  rB  )rD  )rE  )rG  )rI  )rK  )rM  )rO  rP  )rQ  )rR  )rS  )rT  rU  )rV  rW  )rX  rY  )rZ  r[  )r\  r]  )r^  r_  )r`  )ra  rb  )rc  rd  )re  rf  )rg  )rh  )ri  rj  rk  )rl  rm  )rn  )ro  rp  )r`  ra  )rf  rg  )rq  rr  )rs  )rt  ru  )rv  rw  )rx  ry  )rz  r{  )r|  )r}  )r~  r  )r  r  )r  )r  r  )r  )r  )r  r  )r  )r  )r  r  )rG  rH  rI  )r  r  )r  )r  )r  )r  r  )r  )r  )	r  r  r  r  r  r  r  r  r  ),r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  )r  )
r  r  r  r  r  r  r  r  r  r  )r  r  r  r  r  )r  r  r  r  r  )r  r  r  r  )Kr  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r   r  r  r  r  r  r  r  r  r	  r
  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r   r!  r"  r#  r$  r%  r&  r'  r(  r)  r*  r+  r,  r-  r.  r/  r0  )r1  r2  r3  r4  )r5  r6  r7  r8  r9  r:  r;  )	r<  r=  r>  r?  r@  rA  rC  rB  rD  )rE  rF  rG  rH  rI  rJ  )rK  rL  rM  rN  rO  rP  rQ  rR  rS  rT  rU  rV  rW  )rX  rY  rZ  r[  )r\  r]  r^  r_  r`  ra  rb  rc  rd  re  rf  rg  )rh  ri  rj  rk  rl  rm  rn  )ro  rp  rq  rr  rs  rt  )ru  rv  rw  rx  ry  )rz  r{  r|  r}  r~  )r  r  r  r  r  )r  r  r  r  r  r  r  r  )r  r  r  r  r  r  )r  r  r  r  r  r  r  )r  r  r  r  r  r  )r  r  r  r  r   r  r  )	r  r  r  r  r  r  r  r  r  )	r  r  r  r  r  r  r  r  r  )r  r  r  r  r  )r   r  r  r  r  r  r  r  )r  r  r  r  r  r  r  )r  r  r  r  r  r  )r  r  r  r  )r  r  r  r  r  )
r  r  r  r  r  r  r  r  r  r  )r  r  r  r  r  )r  r  r  r  r  )r  r  r  r  )r  r  r  r  r  )r  r  r  r  )r  r  r  r  r  r  r   r  r  r  r  r  r  r  r  r	  r
  r  r  r  r  )r  r  r  r  r  r  r  )r  r  r  r  r  r  r  r  )r  r  r   r!  r"  )r#  r$  r%  r&  )r'  r(  r)  r*  r+  r,  )r-  r.  r/  r0  )r1  r2  r3  )r4  r5  r6  r7  )r8  r9  r:  )r;  r<  r=  )r>  r?  r@  rA  )rB  rC  rD  rE  )rF  rG  rH  rI  rJ  )rK  rL  rM  rN  rO  )rP  rQ  rR  rS  rT  )rU  rV  rW  rX  rY  rZ  r[  r\  )r]  r^  r_  )
r`  ra  rb  rc  rd  re  rf  rg  rh  ri  )rj  rk  rl  rm  rn  )ro  rp  rq  rr  rs  )rt  ru  rv  rw  )rx  ry  rz  r{  r|  r}  r~  r  r  r  r  )r  r  r  )r  )r  r  r  r  r  r  r  r  r  r  r  )r  r  r  r  r  r  r  r  )r  r  r  r  r  r  r  r  )r  r  r  r  r  r  r  )	r  r  r  r  r  r  r  r  r  )r  r  r  r  r  r  r  r  )r  r  r  r  r  r  r  r  r  r  r  )r  r  r  r  r  r  )r  r  r  )r  r  r  r  r  r  r  r  r  r  r  )r  r  r  r  r  )r  r  r  r  )	r  r  r  r  r  r  r  r  r  )r  r  r  r  r  r  )r  r  r  r  r  r  r  r  )r  r  r  r  r  r  r  r   )r  r  r  r  r  )r  r  r  r	  r
  r  )r  r  r  r  )r  r  r  r  )r  r  r  r  r  )r  r  r  r  r  )r  r  r   r!  r"  r#  r$  r%  )r&  r'  r(  r)  r*  )r+  r,  r-  r.  r/  r0  )r1  r2  r3  r4  )r5  r6  r7  r8  r9  )r:  r;  r<  r=  r>  )r?  r@  rA  rB  rC  rD  rE  )rF  rG  rH  rI  rJ  rK  )rL  rM  rN  rO  rP  rQ  )rR  rS  rT  rU  rV  rW  )rX  rY  rZ  r[  r\  )r]  r^  r_  r`  ra  rb  )rc  rd  re  rf  )	rg  rh  ri  rj  rk  rl  rm  rn  ro  )rp  rq  rr  rs  rt  )ru  rv  rw  rx  ry  rz  r{  r|  r}  r~  r  )r  r  r  r  r  r  r  )r  r  r  r  )r  r  r  )r  r  r  r  r  r  )r  r  r  r  )r  r  r  r  r  )r  r  r  r  r  r  )	r  r  r  r  r  r  r  r  r  )r  r  r  r  r  r  r  r  r  r  r  )r  r  r  r  )r  r  r  r  )r  r  r  r  r  r  r  r  r  r  r  r  )r  r  r  r  r  )r  r  r  r  r  r  )r  r  r  r  r  )r  r  r  r  r  )	r  r  r  r  r  r  r  r  r  )r  r  r  r  r  r  r  )r  r  r  r  r  r  r  r  )r  r  r  r  r  r  )r  r  r   r  r  r  )r  r  r  r  r  r	  r
  )r  r  r  r  r  )
r  r  r  r  r  r  r  r  r  r  )r  r  r  r  r  r  )	r   r!  r"  r#  r$  r%  r&  r'  r(  )r)  r*  r+  r,  )r-  r.  r/  r0  r1  r2  r3  )r4  r5  r6  r7  r8  r9  )r:  r;  r<  r=  r>  r?  )r@  rA  rB  rC  )rD  rE  rF  rG  )rH  rI  rJ  rK  rL  rM  rN  rO  rP  rQ  rR  )rS  rT  rU  rV  )rW  rX  rY  rZ  r[  )r\  r]  r^  r_  r`  ra  )rb  rc  rd  re  )rf  rg  rh  )ri  rj  rk  rl  rm  rn  ro  )rp  rq  rr  rs  )rt  ru  rv  rw  rx  ry  rz  r{  r|  r}  r~  r  )r  r  r  r  )	r  r  r  r  r  r  r  r  r  )	r  r  r  r  r  r  r  r  r  )r  r  r  r  )r  r  r  r  r  r  r  r  r  r  r  )r  r  r  r  r  )	r  r  r  r  r  r  r  r  r  )	r  r  r  r  r  r  r  r  r  )r  r  r  r  r  r  r  r  r  r  r  r  )r  r  r  r  r  r  r  r  r  r  r  )r  r  r  r  )r  r  r  )r  r  r  r  r  r  r  )r  r  r  r  r  )r  r  r  r  r  )r  )r  r  r  r  )r  r  )r  r  r  r  r  r  r  )r  r  r  r  r  r  )	r  r 	  r	  r	  r	  r	  r	  r	  r	  )r	  r		  r
	  r	  )r	  r	  r	  r	  r	  r	  )r	  r	  r	  r	  )r	  r	  r	  r	  r	  )r	  r	  r	  r	  r	  r 	  r!	  )r"	  r#	  r$	  r%	  r&	  r'	  r(	  r)	  )r*	  r+	  r,	  r-	  )r.	  r/	  r0	  r1	  r2	  r3	  r4	  )r5	  r6	  r7	  r8	  )r9	  r:	  r;	  r<	  )r=	  )r>	  r?	  r@	  rA	  rB	  rC	  rD	  )rE	  rF	  rG	  )rH	  rI	  rJ	  rK	  rL	  )rM	  rN	  rO	  rP	  rQ	  rR	  )rS	  rT	  rU	  rV	  rW	  rX	  )rY	  rZ	  r[	  r\	  r]	  r^	  r_	  r`	  )ra	  rb	  )rc	  rd	  re	  rf	  rg	  )	rh	  ri	  rj	  rk	  rl	  rm	  rn	  ro	  rp	  )rq	  )rr	  )	rs	  rt	  ru	  rv	  rw	  rx	  ry	  rz	  r{	  )r|	  r}	  r~	  r	  r	  )r	  r	  r	  r	  )r	  r	  r	  r	  r	  )r	  r	  r	  r	  )r	  r	  r	  r	  )r	  r	  r	  )r	  r	  r	  )r	  r	  r	  r	  )	r	  r	  r	  r	  r	  r	  r	  r	  r	  )r	  r	  r	  r	  r	  r	  r	  r	  )r	  r	  r	  r	  r	  r	  r	  )r	  r	  r	  r	  r	  )r	  r	  r	  r	  r	  )r	  r	  r	  r	  )	r	  r	  r	  r	  r	  r	  r	  r	  r	  )r	  r	  r	  r	  r	  r	  r	  )	r	  r	  r	  r	  r	  r	  r	  r	  r	  )	r	  r	  r	  r	  r	  r	  r	  r	  r	  )
r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  )	r	  r	  r	  r	  r	  r	  r	  r	  r	  )r	  r	  r	  r	  )	r	  r	  r	  r	  r	  r 
  r
  r
  r
  )
r
  r
  r
  r
  r
  r	
  r

  r
  r
  r
  )r
  r
  r
  )r
  )r
  )r
  )r
  )r
  )r
  r
  r
  r
  r 
  r!
  r"
  r#
  r$
  r%
  r&
  r'
  r(
  r)
  r*
  r+
  r,
  )r-
  r.
  )r0
  r1
  r2
  r3
  )
r5
  r6
  r7
  r8
  r9
  r:
  r;
  r<
  r=
  r>
  ),r?
  r@
  rA
  rB
  rE
  rC
  rD
  rF
  rG
  rH
  rI
  rJ
  rK
  rL
  rM
  rN
  rO
  rP
  rQ
  rR
  rS
  rT
  rU
  rV
  rW
  rX
  rY
  rZ
  r[
  r\
  r]
  r^
  r_
  r`
  ra
  rb
  rc
  rd
  re
  rf
  rg
  rh
  ri
  rj
  )rk
  rl
  rm
  rn
  )ro
  rp
  rq
  rr
  rs
  rt
  ru
  rv
  rw
  rx
  ry
  rz
  r{
  )r|
  r}
  r~
  )r
  r
  r
  )r
  r
  r
  r
  r
  r
  r
  r
  )	r
  r
  r
  r
  r
  r
  r
  r
  r
  )r
  r
  r
  r
  r
  )	r
  r
  r
  r
  r
  r
  r
  r
  r
  )r
  r
  r
  )r
  r
  r
  r
  r
  )r
  r
  r
  r
  )r
  r
  r
  r
  )r
  r
  r
  r
  r
  r
  r
  )r
  r
  r
  r
  r
  r
  r
  r
  )r
  r
  r
  r
  r
  r
  )	r
  r
  r
  r
  r
  r
  r
  r
  r
  )	r
  r
  r
  r
  r
  r
  r
  r
  r
  )r
  r
  r
  r
  r
  )	r
  r
  r
  r
  r
  r
  r
  r
  r
  )r
  )r  r
  r
  r
  r
  r
  )r
  r
  r
  r
  r
  r
  r
  r
  )
r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  )r
  r
  r   r  r  r  r  )r  r  r  r  r	  )r
  r  r  r  r  )r  r  r  r  )r  r  r  r  r  r  r  r  )r  r  r  r  r  r   )r!  r"  r#  )	r$  r%  r&  r'  r(  r)  r*  r+  r,  )r-  r.  r/  r0  r1  r2  )r3  r4  r5  )r6  r7  r8  )r9  r:  r;  r<  r=  r>  r?  r@  rA  rB  rC  )rD  rE  rF  rG  rH  )	rI  rJ  rK  rL  rM  rN  rO  rP  rQ  )rR  rS  rT  )rU  rV  rW  rX  rY  rZ  r[  )r\  r]  r^  )r_  r`  ra  )rb  rc  rd  re  )rf  rg  rh  ri  )
rj  rk  rl  rm  rn  ro  rp  rq  rr  rs  )rt  ru  rv  rw  )
rx  ry  rz  r{  r|  r}  r~  r  r  r  )
r  r  r  r  r  r  r  r  r  r  )
r  r  r  r  r  r  r  r  r  r  )r  r  r  )r  r  r  r  r  r  )r  r  r  r  )r  r  r  r  r  )r  r  r  r  r  )r  r  r  r  r  r  )r  r  r  r  r  r  r  )r  )r  )r  r  r  )r  r  r  )r  r  r  r  r  )r  r  r  r  )r  r  r  r  )	r  r  r  r  r  r  r  r  r  )	r  r  r  r  r  r  r  r  r  )	r  r  r  r  r  r  r  r  r  )r  r  r  r  )r  )r  r  r  )r  r  r  r  r  r  r  r  r  r   r  r  r  r  )r  )r  r  r  r	  r
  r  r  r  )r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r   r!  r"  r#  r$  r%  r&  r'  r(  )r)  r*  r+  r,  r-  r.  r/  )r0  r1  r2  r3  )
r4  r5  r6  r7  r8  r9  r:  r;  r<  r=  )	r>  r?  r@  rA  rB  rC  rD  rE  rF  )rG  rH  rI  )rJ  rK  rL  )rM  rN  rO  )rP  rQ  rR  rT  rS  rU  rV  )rW  rX  rY  rZ  r[  r\  r]  )	r^  r_  r`  ra  rb  rc  rd  re  rf  )rg  )rh  ri  rj  )rk  rl  rm  )rn  ro  rp  )rq  rr  rs  )rt  ru  rv  )rw  rx  ry  rz  r{  )r|  r}  r~  )r  r  r  )r  r  r  )r  r  r  )r  r  r  )r  r  r  r  r  r  r  r  )r  r  r  r  r  r  r  r  )r  r  r  r  r  r  r  )r  )r  r  r  r  )r  )r  )r  r  r  )r  r  r  r  )r  r  r  r  )r  r  r  )	r  r  r  r  r  r  r  r  r  N__file____version__)Zmodule_specextra_objectszNone of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used.(  r  typingr    r   r  r   r   r   r   r	   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   Z
get_logger__name__loggerZ_import_structurer  dirappendr  extendr@  rC  rF  rH  rJ  r  r
  r  r  r  r   r  r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   Zdata.data_collatorr+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r  r5   r  r6   r7   r  r8   r9   r:   r  r;   r  r<   r=   r>   r?   r@   rA   rB   rC   rD   r  rE   r  rF   rG   rH   rI   rJ   rK   rL   Zmodels.albertrM   rN   Zmodels.alignrO   rP   rQ   rR   rS   Zmodels.altcliprT   rU   rV   rW   rX   Z$models.audio_spectrogram_transformerrY   rZ   Zmodels.autor[   r\   r]   r^   r_   r`   ra   rb   rc   rd   re   rf   Zmodels.autoformerrg   rh   Zmodels.barkri   rj   rk   rl   rm   Zmodels.bartrn   ro   Zmodels.beitrp   rq   Zmodels.bertrr   rs   rt   ru   rv   Zmodels.bert_generationrw   Zmodels.bert_japaneserx   ry   rz   Zmodels.bertweetr{   Zmodels.big_birdr|   r}   Zmodels.bigbird_pegasusr~   r   Zmodels.biogptr   r   r   Z
models.bitr   r   Zmodels.blenderbotr   r   r   Zmodels.blenderbot_smallr   r   r   Zmodels.blipr   r   r   r   r   Zmodels.blip_2r   r   r   r   r   Zmodels.bloomr   r   Zmodels.bridgetowerr   r   r   r   r   Zmodels.brosr   r   r   Zmodels.byt5r   Zmodels.camembertr   r   Zmodels.caniner   r   r   Zmodels.chinese_clipr   r   r   r   r   Zmodels.clapr   r   r   r   r   Zmodels.clipr   r   r   r   r   r   Zmodels.clipsegr   r   r   r   r   Zmodels.codegenr   r   r   Zmodels.conditional_detrr   r   Zmodels.convbertr   r   r   Zmodels.convnextr   r   Zmodels.convnextv2r   r   Zmodels.cpmantr   r   r   Zmodels.ctrlr   r   r   Z
models.cvtr   r   Zmodels.data2vecr   r   r   r   r   Zmodels.debertar   r   r   Zmodels.deberta_v2r   r   Zmodels.decision_transformerr   r   Zmodels.deformable_detrr   r   Zmodels.deitr   r   Zmodels.deprecated.mctctr   r   r   r   Zmodels.deprecated.mmbtr   Zmodels.deprecated.open_llamar   r   Zmodels.deprecated.retribertr   r   r   Zmodels.deprecated.tapexr   Z(models.deprecated.trajectory_transformerr   r   Zmodels.deprecated.vanr   r   Zmodels.detar   r   Zmodels.detrr   r   Zmodels.dinatr   r   Zmodels.dinov2r   r   Zmodels.distilbertr   r   r   Zmodels.donutr   r   r   Z
models.dprr   r   r   r   r   r   Z
models.dptr  r  Zmodels.efficientformerr  r  Zmodels.efficientnetr  r  Zmodels.electrar  r  r	  Zmodels.encodecr
  r  r  Zmodels.encoder_decoderr  Zmodels.ernier  r  Zmodels.ernie_mr  r  Z
models.esmr  r  r  Zmodels.falconr  r  Zmodels.flaubertr  r  r  Zmodels.flavar  r  r  r  r  r  Zmodels.fnetr   r!  Zmodels.focalnetr"  r#  Zmodels.fsmtr$  r%  r&  Zmodels.funnelr'  r(  r)  Z
models.gitr*  r+  r,  r-  Zmodels.glpnr.  r/  Zmodels.gpt2r0  r1  r2  Zmodels.gpt_bigcoder3  r4  Zmodels.gpt_neor5  r6  Zmodels.gpt_neoxr7  r8  Zmodels.gpt_neox_japaneser9  r:  Zmodels.gptjr;  r<  Zmodels.gptsan_japaneser=  r>  r?  Zmodels.graphormerr@  rA  Zmodels.groupvitrB  rC  rD  rE  Zmodels.herbertrF  Zmodels.hubertrG  rH  Zmodels.ibertrI  rJ  Zmodels.ideficsrK  rL  Zmodels.imagegptrM  rN  Zmodels.informerrO  rP  Zmodels.instructbliprQ  rR  rS  rT  rU  Zmodels.jukeboxrV  rW  rX  rY  rZ  Zmodels.layoutlmr[  r\  r]  Zmodels.layoutlmv2r^  r_  r`  ra  rb  rc  Zmodels.layoutlmv3rd  re  rf  rg  rh  ri  Zmodels.layoutxlmrj  Z
models.ledrk  rl  rm  Zmodels.levitrn  ro  Zmodels.liltrp  rq  Zmodels.llamarr  rs  Zmodels.longformerrt  ru  rv  Zmodels.longt5rw  rx  Zmodels.lukery  rz  r{  Zmodels.lxmertr|  r}  r~  Zmodels.m2m_100r  r  Zmodels.marianr  Zmodels.markuplmr  r  r  r  r  Zmodels.mask2formerr  r  Zmodels.maskformerr  r  r  Zmodels.mbartr  Zmodels.megar  r  Zmodels.megatron_bertr  r  Zmodels.mgp_strr  r  r  r  Zmodels.mistralr  r  Zmodels.mobilebertr  r  r  Zmodels.mobilenet_v1r  r  Zmodels.mobilenet_v2r  r  Zmodels.mobilevitr  r  Zmodels.mobilevitv2r  r  Zmodels.mpnetr  r  r  Z
models.mptr  r  Z
models.mrar  r  Z
models.mt5r  Zmodels.musicgenr  r  r  Z
models.mvpr  r  Z
models.natr  r  Zmodels.nezhar  r  Zmodels.nllb_moer  r  Zmodels.nougatr  Zmodels.nystromformerr  r  Zmodels.oneformerr  r  r  Zmodels.openair  r  r  Z
models.optr  Zmodels.owlvitr  r  r  r  r  Zmodels.pegasusr  r  r  Zmodels.pegasus_xr  r  Zmodels.perceiverr  r  r  Zmodels.persimmonr  r  Zmodels.phobertr  Zmodels.pix2structr  r  r  r  r  Zmodels.plbartr  r  Zmodels.poolformerr  r  Zmodels.pop2pianor  r  Zmodels.prophetnetr  r  r  Z
models.pvtr  r  Zmodels.qdqbertr  r  Z
models.ragr  r  r  Zmodels.realmr  r  r  Zmodels.reformerr  r  Zmodels.regnetr  r  Zmodels.rembertr  r  Zmodels.resnetr  r  Zmodels.robertar  r  r  Zmodels.roberta_prelayernormr  r  Zmodels.roc_bertr  r  r  Zmodels.roformerr  r  r  Zmodels.rwkvr  r  Z
models.samr  r  r  r  r   r  Zmodels.segformerr  r  Z
models.sewr  r  Zmodels.sew_dr  r  Zmodels.speech_encoder_decoderr  Zmodels.speech_to_textr	  r
  r  Zmodels.speech_to_text_2r  r  r  r  Zmodels.speecht5r  r  r  r  r  r  Zmodels.splinterr  r  r  Zmodels.squeezebertr  r  r  Zmodels.swiftformerr  r  Zmodels.swinr  r  Zmodels.swin2srr   r!  Zmodels.swinv2r"  r#  Zmodels.switch_transformersr$  r%  Z	models.t5r&  r'  Zmodels.table_transformerr(  r)  Zmodels.tapasr*  r+  r,  Zmodels.time_series_transformerr-  r.  Zmodels.timesformerr/  r0  Zmodels.timm_backboner1  Zmodels.transfo_xlr2  r3  r4  r5  Zmodels.trocrr6  r7  r8  Zmodels.tvltr9  r:  r;  r<  Zmodels.umt5r=  Zmodels.unispeechr>  r?  Zmodels.unispeech_satr@  rA  Zmodels.upernetrB  Zmodels.videomaerC  rD  Zmodels.viltrE  rF  rG  rH  rI  Zmodels.vision_encoder_decoderrJ  Zmodels.vision_text_dual_encoderrK  rL  Zmodels.visual_bertrM  rN  Z
models.vitrO  rP  Zmodels.vit_hybridrQ  rR  Zmodels.vit_maerS  rT  Zmodels.vit_msnrU  rV  Zmodels.vitdetrW  rX  Zmodels.vitmatterY  rZ  Zmodels.vitsr[  r\  r]  Zmodels.vivitr^  r_  Zmodels.wav2vec2r`  ra  rb  rc  rd  re  Zmodels.wav2vec2_conformerrf  rg  Zmodels.wav2vec2_phonemerh  Zmodels.wav2vec2_with_lmri  Zmodels.wavlmrj  rk  Zmodels.whisperrl  rm  rn  ro  rp  Zmodels.x_cliprq  rr  rs  rt  ru  Zmodels.xglmrv  rw  Z
models.xlmrx  ry  rz  Zmodels.xlm_prophetnetr{  r|  Zmodels.xlm_robertar}  r~  Zmodels.xlm_roberta_xlr  r  Zmodels.xlnetr  r  Zmodels.xmodr  r  Zmodels.yolosr  r  Zmodels.yosor  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  Zutils.quantization_configr  r  Z!utils.dummy_sentencepiece_objectsr  Zmodels.barthezr  Zmodels.bartphor  r  r  r  Zmodels.code_llamar  Z
models.cpmr  r  r  r  Zmodels.gpt_sw3r  r  r  r  r  r  r  Zmodels.mluker  r  Zmodels.nllbr  r  r  r  r  r  r  r  r  r   r  Zutils.dummy_tokenizers_objectsr  r  r  r  r  r  r	  r
  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r   r!  r"  r#  r$  r%  r&  r'  r(  Zmodels.mbart50r)  r*  r+  r,  r-  r.  r/  r0  r1  r2  r3  r4  r5  r6  r7  r8  r9  r:  r;  r<  r=  r?  r>  Z2utils.dummies_sentencepiece_and_tokenizers_objectsrB  rA  Zutils.dummy_speech_objectsrD  rE  Z#utils.dummy_tensorflow_text_objectsrG  Zutils.dummy_keras_nlp_objectsrI  Zutils.dummy_vision_objectsrL  rK  rN  rM  rO  rP  rQ  rR  rS  rT  rU  rV  rW  rX  rY  rZ  r[  r\  r]  r^  r_  r`  ra  rb  rc  rd  re  rf  rg  rh  ri  rj  rk  rl  rm  rn  ro  rp  rq  rr  rs  rt  ru  rv  rw  rx  ry  rz  r{  r|  r}  r~  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  Zutils.dummy_pt_objectsZbenchmark.benchmarkr  Zbenchmark.benchmark_argsr  Zdata.datasetsr  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r   r  r  r  r  r  r  r  r  r	  r
  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r   r!  r"  r#  r$  r%  r&  r'  r(  r)  r*  r+  r,  r-  r.  r/  r0  r1  r2  r3  r4  r5  r6  r7  r8  r9  r:  r;  r<  r=  r>  r?  r@  rA  rC  rB  rD  rE  rF  rG  rH  rI  rJ  rK  rL  rM  rN  rO  rP  rQ  rR  rS  rT  rU  rV  rW  rX  rY  rZ  r[  r\  r]  r^  r_  r`  ra  rb  rc  rd  re  rf  rg  rh  ri  rj  rk  rl  rm  rn  ro  rp  rq  rr  rs  rt  ru  rv  rw  rx  ry  rz  r{  r|  r}  r~  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r   r  r  r  r  r  r  r  r  r	  r
  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r   r!  r"  r#  r$  r%  r&  r'  r(  r)  r*  r+  r,  r-  r.  r/  r0  r1  r2  r3  r4  r5  r6  r7  r8  r9  r:  r;  r<  r=  r>  r?  r@  rA  rB  rC  rD  rE  rF  rG  rH  rI  rJ  rK  rL  rM  rN  rO  rP  rQ  rR  rS  rT  rU  rV  rW  rX  rY  rZ  r[  r\  r]  r^  r_  r`  ra  rb  rc  rd  re  rf  rg  rh  ri  rj  rk  rl  rm  rn  ro  rp  rq  rr  rs  rt  ru  rv  rw  rx  ry  rz  r{  r|  r}  r~  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r   r  r  r  r  r  r  r  r  r	  r
  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r   r!  r"  r#  r$  r%  r&  r'  r(  r)  r*  r+  r,  r-  r.  r/  r0  r1  r2  r3  r4  r5  r6  r7  r8  r9  r:  r;  r<  r=  r>  r?  r@  rA  rB  rC  rD  rE  rF  rG  rH  rI  rJ  rK  rL  rM  rN  rO  rP  rQ  rR  rS  rT  rU  rV  rW  rX  rY  rZ  r[  r\  r]  r^  r_  r`  ra  rb  rc  rd  re  rf  rg  rh  ri  rj  rk  rl  rm  rn  ro  rp  rq  rr  rs  rt  ru  rv  rw  rx  ry  rz  r{  r|  r}  r~  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r   r  r  r  r  r  r  r  r  r	  r
  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r   r!  r"  r#  r$  r%  r&  r'  r(  r)  r*  r+  r,  r-  r.  r/  r0  r1  r2  r3  r4  r5  r6  r7  r8  r9  r:  r;  r<  r=  r>  r?  r@  rA  rB  rC  rD  rE  rF  rG  rH  rI  rJ  rK  rL  rM  rN  rO  rP  rQ  rR  rS  rT  rU  rV  rW  rX  rY  rZ  r[  r\  r]  r^  r_  r`  ra  rb  rc  rd  re  rf  rg  rh  ri  rj  rk  rl  rm  rn  ro  rp  rq  rr  rs  rt  ru  rv  rw  rx  ry  rz  r{  r|  r}  r~  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r 	  r	  r	  r	  r	  r	  r	  r	  r	  r		  r
	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r 	  r!	  r"	  r#	  r$	  r%	  r&	  r'	  r(	  r)	  r*	  r+	  r,	  r-	  r.	  r/	  r0	  r1	  r2	  r3	  r4	  r5	  r6	  r7	  r8	  r9	  r:	  r;	  r<	  r=	  r>	  r?	  r@	  rA	  rB	  rC	  rD	  rE	  rF	  rG	  rH	  rI	  rJ	  rK	  rL	  rM	  rN	  rO	  rP	  rQ	  rR	  rS	  rT	  rU	  rV	  rW	  rX	  rY	  rZ	  r[	  r\	  r]	  r^	  r_	  r`	  ra	  rb	  rc	  rd	  re	  rf	  rg	  rh	  ri	  rj	  rk	  rl	  rm	  rn	  ro	  rp	  rq	  rr	  rs	  rt	  ru	  rv	  rw	  rx	  ry	  rz	  r{	  r|	  r}	  r~	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r	  r 
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r	
  r

  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  Zutils.dummy_tf_objectsZbenchmark.benchmark_args_tfr
  Zbenchmark.benchmark_tfr
  r
  r
  r
  r
  r 
  r!
  r"
  r#
  r$
  r%
  r&
  r'
  r(
  r)
  r*
  r+
  r,
  r/
  r-
  r.
  r4
  r0
  r1
  r2
  r3
  r5
  r6
  r7
  r8
  r9
  r:
  r;
  r<
  r=
  r>
  r?
  r@
  rA
  rB
  rE
  rC
  rD
  rF
  rG
  rH
  rI
  rJ
  rK
  rL
  rM
  rN
  rO
  rP
  rQ
  rR
  rS
  rT
  rU
  rV
  rW
  rX
  rY
  rZ
  r[
  r\
  r]
  r^
  r_
  r`
  ra
  rb
  rc
  rd
  re
  rf
  rg
  rh
  ri
  rj
  rk
  rl
  rm
  rn
  ro
  rp
  rq
  rr
  rs
  rt
  ru
  rv
  rw
  rx
  ry
  rz
  r{
  r|
  r}
  r~
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r
  r   r  r  r  r  r  r  r  r  r	  r
  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r   r!  r"  r#  r$  r%  r&  r'  r(  r)  r*  r+  r,  r-  r.  r/  r0  r1  r2  r3  r4  r5  r6  r7  r8  r9  r:  r;  r<  r=  r>  r?  r@  rA  rB  rC  rD  rE  rF  rG  rH  rI  rJ  rK  rL  rM  rN  rO  rP  rQ  rR  rS  rT  rU  rV  rW  rX  rY  rZ  r[  r\  r]  r^  r_  r`  ra  rb  rc  rd  re  rf  rg  rh  ri  rj  rk  rl  rm  rn  ro  rp  rq  rr  rs  rt  ru  rv  rw  rx  ry  rz  r{  r|  r}  r~  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  ZLutils.dummy_essentia_and_librosa_and_pretty_midi_and_scipy_and_torch_objectsr  r  r  Zutils.dummy_flax_objectsr  r  r  r  r  r  r  r  r  r   r  r  r  r  r  r  r  r  r  r	  r
  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r   r!  r"  r#  r$  r%  r&  r'  r(  r)  r*  r+  r,  r-  r.  r/  r0  r1  r2  r3  r4  r5  r6  r7  r8  r9  r:  r;  r<  r=  r>  r?  r@  rA  rB  rC  rD  rE  rF  rG  rH  rI  rJ  rK  rL  rM  rN  rO  rP  rQ  rR  rT  rS  rU  rV  rW  rX  rY  rZ  r[  r\  r]  r^  r_  r`  ra  rb  rc  rd  re  rf  rg  rh  ri  rj  rk  rl  rm  rn  ro  rp  rq  rr  rs  rt  ru  rv  rw  rx  ry  rz  r{  r|  r}  r~  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  sysglobals__spec__moduleswarningr  r  r  r  <module>   s#  T
		













	

















































	







%		*
     
     L



















$


0



	
	

O











	
	
	









	





	

	
	

	




	









	
	
	



	
	













	






	




	
	

	



	
	







	




	






	







	


	
	








	














	












	







	
	









	








	






	


	

	








	
	












$






0






	


	








	






	
	









	















	
	





	














"

	











	











R2.&	:"$$4$,$$$<$$$$<$$,$$,44$<<$$$$4$,$$$$$4$$4$$$$$$<$,<$$$,$,4$<44$ %%<
\D	4 ,

$




$$
T k.Z22*  dM*B	R:r*jB	:222J
:B	:>	RR2F
B	:*2Z44,4,D	L
4,<,$,$$,,444L
$\44,d$dL
L
D	TL
d<$d4,T<L
L
4<,,44L
4<,44D	<<<4<,T4dD	,$<,4<Td,,l4<44TD	L
<<D	4\<T,D	<<,,d,4<,$D	,l,TT,d4TTld,$D	44,D	<T,<,4D	L
,D	,,D	$4<<L
4TT4,4,,$$,TL
D	44,TD	TT\T,T\$
,Z k.*r""J
R2R$4,,D	L
<TT4T<L
\D	44,L
<$T<$$d4T$D	$$,,\,\\\$<,44<D	$$4,,TTT,
$
zJ
B	*ZR"""B	D	T$$$$$4$$$$$L
L
D	,$,,$V	