U
    ,-e%                     @   s   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ eeZd	d
iZG dd deZG dd de
ZdS )z BEiT model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)loggingz%microsoft/beit-base-patch16-224-pt22kzUhttps://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.jsonc                       sn   e Zd ZdZdZddddddddd	d
ddddddddddddddgddddgddddddf fdd	Z  ZS )
BeitConfiga  
    This is the configuration class to store the configuration of a [`BeitModel`]. It is used to instantiate an BEiT
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the BEiT
    [microsoft/beit-base-patch16-224-pt22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k) architecture.

    Args:
        vocab_size (`int`, *optional*, defaults to 8092):
            Vocabulary size of the BEiT model. Defines the number of different image tokens that can be used during
            pre-training.
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        use_mask_token (`bool`, *optional*, defaults to `False`):
            Whether to use a mask token for masked image modeling.
        use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to use BERT-style absolute position embeddings.
        use_relative_position_bias (`bool`, *optional*, defaults to `False`):
            Whether to use T5-style relative position embeddings in the self-attention layers.
        use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`):
            Whether to use the same relative position embeddings across all self-attention layers of the Transformer.
        layer_scale_init_value (`float`, *optional*, defaults to 0.1):
            Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale.
        drop_path_rate (`float`, *optional*, defaults to 0.1):
            Stochastic depth rate per sample (when applied in the main path of residual layers).
        use_mean_pooling (`bool`, *optional*, defaults to `True`):
            Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the
            CLS token, before applying the classification head.
        out_indices (`List[int]`, *optional*, defaults to `[3, 5, 7, 11]`):
            Indices of the feature maps to use for semantic segmentation.
        pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`):
            Pooling scales used in Pooling Pyramid Module applied on the last feature map.
        use_auxiliary_head (`bool`, *optional*, defaults to `True`):
            Whether to use an auxiliary head during training.
        auxiliary_loss_weight (`float`, *optional*, defaults to 0.4):
            Weight of the cross-entropy loss of the auxiliary head.
        auxiliary_channels (`int`, *optional*, defaults to 256):
            Number of channels to use in the auxiliary head.
        auxiliary_num_convs (`int`, *optional*, defaults to 1):
            Number of convolutional layers to use in the auxiliary head.
        auxiliary_concat_input (`bool`, *optional*, defaults to `False`):
            Whether to concatenate the output of the auxiliary head with the input before the classification layer.
        semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
            The index that is ignored by the loss function of the semantic segmentation model.

    Example:

    ```python
    >>> from transformers import BeitConfig, BeitModel

    >>> # Initializing a BEiT beit-base-patch16-224-pt22k style configuration
    >>> configuration = BeitConfig()

    >>> # Initializing a model (with random weights) from the beit-base-patch16-224-pt22k style configuration
    >>> model = BeitModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zbeiti    i      i   Zgelug        g{Gz?g-q=      r   Fg?T                  g?      c                    s   t  jf | || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _d S )N)super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangelayer_norm_eps
image_size
patch_sizenum_channelsuse_mask_token use_absolute_position_embeddingsuse_relative_position_bias!use_shared_relative_position_biaslayer_scale_init_valuedrop_path_rateuse_mean_poolingout_indicespool_scalesuse_auxiliary_headauxiliary_loss_weightauxiliary_channelsauxiliary_num_convsauxiliary_concat_inputsemantic_loss_ignore_index)selfr   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   kwargs	__class__ l/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/beit/configuration_beit.pyr   x   s:     zBeitConfig.__init__)__name__
__module____qualname____doc__Z
model_typer   __classcell__r8   r8   r6   r9   r
   $   s>   Q

r
   c                   @   sJ   e Zd ZedZeeeee	ef f dddZ
eedddZdS )BeitOnnxConfigz1.11)returnc                 C   s   t ddddddfgS )NZpixel_valuesbatchr$   heightwidth)r   r   r   r   r   r4   r8   r8   r9   inputs   s    zBeitOnnxConfig.inputsc                 C   s   dS )Ng-C6?r8   rD   r8   r8   r9   atol_for_validation   s    z"BeitOnnxConfig.atol_for_validationN)r:   r;   r<   r   parseZtorch_onnx_minimum_versionpropertyr   strintrE   floatrF   r8   r8   r8   r9   r?      s
   
 r?   N)r=   collectionsr   typingr   	packagingr   Zconfiguration_utilsr   Zonnxr   utilsr	   Z
get_loggerr:   loggerZ"BEIT_PRETRAINED_CONFIG_ARCHIVE_MAPr
   r?   r8   r8   r8   r9   <module>   s   
 