U
    ,È-eH  ã                   @   s0   d Z ddlmZ ddlmZ G dd„ deƒZdS )z%
Audio/Text processor class for CLAP
é   )ÚProcessorMixin)ÚBatchEncodingc                       sN   e Zd ZdZdZdZ‡ fdd„Zddd„Zd	d
„ Zdd„ Z	e
dd„ ƒZ‡  ZS )ÚClapProcessora  
    Constructs a CLAP processor which wraps a CLAP feature extractor and a RoBerta tokenizer into a single processor.

    [`ClapProcessor`] offers all the functionalities of [`ClapFeatureExtractor`] and [`RobertaTokenizerFast`]. See the
    [`~ClapProcessor.__call__`] and [`~ClapProcessor.decode`] for more information.

    Args:
        feature_extractor ([`ClapFeatureExtractor`]):
            The audio processor is a required input.
        tokenizer ([`RobertaTokenizerFast`]):
            The tokenizer is a required input.
    ZClapFeatureExtractor)ZRobertaTokenizerZRobertaTokenizerFastc                    s   t ƒ  ||¡ d S ©N)ÚsuperÚ__init__)ÚselfÚfeature_extractorÚ	tokenizer©Ú	__class__© úi/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/clap/processing_clap.pyr   '   s    zClapProcessor.__init__Nc                 K   s¢   |  dd¡}|dkr$|dkr$tdƒ‚|dk	rB| j|fd|i|—Ž}|dk	rb| j|f||dœ|—Ž}|dk	r€|dk	r€|j|d< |S |dk	rŒ|S ttf |Ž|dS dS )a	  
        Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text`
        and `kwargs` arguments to RobertaTokenizerFast's [`~RobertaTokenizerFast.__call__`] if `text` is not `None` to
        encode the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to
        ClapFeatureExtractor's [`~ClapFeatureExtractor.__call__`] if `audios` is not `None`. Please refer to the
        doctsring of the above two methods for more information.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case
                of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels,
                and T the sample length of the audio.

            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **audio_features** -- Audio features to be fed to a model. Returned when `audios` is not `None`.
        Úsampling_rateNz?You have to specify either text or audios. Both cannot be none.Úreturn_tensors)r   r   Úinput_features)ÚdataZtensor_type)ÚpopÚ
ValueErrorr
   r	   r   r   Údict)r   ÚtextZaudiosr   Úkwargsr   ÚencodingZaudio_featuresr   r   r   Ú__call__*   s(    #ÿ ÿÿ
zClapProcessor.__call__c                 O   s   | j j||ŽS )zÄ
        This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        )r
   Úbatch_decode©r   Úargsr   r   r   r   r   b   s    zClapProcessor.batch_decodec                 O   s   | j j||ŽS )z¾
        This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer
        to the docstring of this method for more information.
        )r
   Údecoder   r   r   r   r   i   s    zClapProcessor.decodec                 C   s"   | j j}| jj}tt || ¡ƒS r   )r
   Úmodel_input_namesr	   Úlistr   Úfromkeys)r   Ztokenizer_input_namesZfeature_extractor_input_namesr   r   r   r   p   s    zClapProcessor.model_input_names)NNN)Ú__name__Ú
__module__Ú__qualname__Ú__doc__Zfeature_extractor_classZtokenizer_classr   r   r   r   Úpropertyr   Ú__classcell__r   r   r   r   r      s   
8r   N)r$   Zprocessing_utilsr   Ztokenization_utils_baser   r   r   r   r   r   Ú<module>   s   