U
    ,-e                     @   sz   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 e
eZdd	d
dZG dd deZG dd deZdS )z ConvBERT model configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingzGhttps://huggingface.co/YituTech/conv-bert-base/resolve/main/config.jsonzOhttps://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.jsonzHhttps://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json)zYituTech/conv-bert-basezYituTech/conv-bert-medium-smallzYituTech/conv-bert-smallc                       s&   e Zd ZdZdZd fdd	Z  ZS )ConvBertConfigaW  
    This is the configuration class to store the configuration of a [`ConvBertModel`]. It is used to instantiate an
    ConvBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the ConvBERT
    [YituTech/conv-bert-base](https://huggingface.co/YituTech/conv-bert-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the ConvBERT model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`ConvBertModel`] or [`TFConvBertModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`ConvBertModel`] or [`TFConvBertModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        head_ratio (`int`, *optional*, defaults to 2):
            Ratio gamma to reduce the number of attention heads.
        num_groups (`int`, *optional*, defaults to 1):
            The number of groups for grouped linear layers for ConvBert model
        conv_kernel_size (`int`, *optional*, defaults to 9):
            The size of the convolutional kernel.
        classifier_dropout (`float`, *optional*):
            The dropout ratio for the classification head.

    Example:

    ```python
    >>> from transformers import ConvBertConfig, ConvBertModel

    >>> # Initializing a ConvBERT convbert-base-uncased style configuration
    >>> configuration = ConvBertConfig()

    >>> # Initializing a model (with random weights) from the convbert-base-uncased style configuration
    >>> model = ConvBertModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zconvbert:w           gelu皙?      {Gz?-q=   r   	   Nc                    s   t  jf |||d| || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _|| _|| _d S )N)pad_token_idbos_token_ideos_token_id)super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epsembedding_size
head_ratioconv_kernel_size
num_groupsclassifier_dropout)selfr   r   r   r   r   r   r    r!   r"   r#   r$   r%   r   r   r   r&   r'   r(   r)   r*   kwargs	__class__ t/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/convbert/configuration_convbert.pyr   e   s0    zConvBertConfig.__init__)r	   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   r
   r   r   r   N)__name__
__module____qualname____doc__Z
model_typer   __classcell__r/   r/   r-   r0   r   %   s.   =                    r   c                   @   s.   e Zd Zeeeeeef f dddZdS )ConvBertOnnxConfig)returnc                 C   s<   | j dkrdddd}n
ddd}td|fd|fd	|fgS )
Nzmultiple-choicebatchchoicesequence)r   r   r   )r   r   Z	input_idsZattention_maskZtoken_type_ids)taskr   )r+   Zdynamic_axisr/   r/   r0   inputs   s    

zConvBertOnnxConfig.inputsN)r1   r2   r3   propertyr   strintr<   r/   r/   r/   r0   r6      s   r6   N)r4   collectionsr   typingr   Zconfiguration_utilsr   Zonnxr   utilsr   Z
get_loggerr1   loggerZ&CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAPr   r6   r/   r/   r/   r0   <module>   s   

s