U
    ,-e"                     @   s   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 e
eZdd	d
dddddddd
ZG dd deZG dd deZdS )z ERNIE model configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingzJhttps://huggingface.co/nghuyong/ernie-1.0-base-zh/resolve/main/config.jsonzJhttps://huggingface.co/nghuyong/ernie-2.0-base-en/resolve/main/config.jsonzKhttps://huggingface.co/nghuyong/ernie-2.0-large-en/resolve/main/config.jsonzJhttps://huggingface.co/nghuyong/ernie-3.0-base-zh/resolve/main/config.jsonzLhttps://huggingface.co/nghuyong/ernie-3.0-medium-zh/resolve/main/config.jsonzJhttps://huggingface.co/nghuyong/ernie-3.0-mini-zh/resolve/main/config.jsonzKhttps://huggingface.co/nghuyong/ernie-3.0-micro-zh/resolve/main/config.jsonzJhttps://huggingface.co/nghuyong/ernie-3.0-nano-zh/resolve/main/config.jsonzFhttps://huggingface.co/nghuyong/ernie-gram-zh/resolve/main/config.jsonzHhttps://huggingface.co/nghuyong/ernie-health-zh/resolve/main/config.json)
znghuyong/ernie-1.0-base-zhznghuyong/ernie-2.0-base-enznghuyong/ernie-2.0-large-enznghuyong/ernie-3.0-base-zhznghuyong/ernie-3.0-medium-zhznghuyong/ernie-3.0-mini-zhznghuyong/ernie-3.0-micro-zhznghuyong/ernie-3.0-nano-zhznghuyong/ernie-gram-zhznghuyong/ernie-health-zhc                       s&   e Zd ZdZdZd fdd	Z  ZS )ErnieConfiga  
    This is the configuration class to store the configuration of a [`ErnieModel`] or a [`TFErnieModel`]. It is used to
    instantiate a ERNIE model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the ERNIE
    [nghuyong/ernie-3.0-base-zh](https://huggingface.co/nghuyong/ernie-3.0-base-zh) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the ERNIE model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`ErnieModel`] or [`TFErnieModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`ErnieModel`] or [`TFErnieModel`].
        task_type_vocab_size (`int`, *optional*, defaults to 3):
            The vocabulary size of the `task_type_ids` for ERNIE2.0/ERNIE3.0 model
        use_task_id (`bool`, *optional*, defaults to `False`):
            Whether or not the model support `task_type_ids`
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        is_decoder (`bool`, *optional*, defaults to `False`):
            Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        classifier_dropout (`float`, *optional*):
            The dropout ratio for the classification head.

    Examples:

    ```python
    >>> from transformers import ErnieConfig, ErnieModel

    >>> # Initializing a ERNIE nghuyong/ernie-3.0-base-zh style configuration
    >>> configuration = ErnieConfig()

    >>> # Initializing a model (with random weights) from the nghuyong/ernie-3.0-base-zh style configuration
    >>> model = ErnieModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zernie:w           gelu皙?      r   F{Gz?-q=r   absoluteTNc                    s   t  jf d|i| || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _|| _|| _d S )Npad_token_id)super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizetask_type_vocab_sizeuse_task_idinitializer_rangelayer_norm_epsposition_embedding_type	use_cacheclassifier_dropout)selfr   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r   r%   r&   r'   kwargs	__class__ n/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/ernie/configuration_ernie.pyr   r   s$    zErnieConfig.__init__)r	   r
   r   r   r   r   r   r   r   r   r   Fr   r   r   r   TN)__name__
__module____qualname____doc__Z
model_typer   __classcell__r,   r,   r*   r-   r   )   s*   F                  r   c                   @   s.   e Zd Zeeeeeef f dddZdS )ErnieOnnxConfig)returnc                 C   sB   | j dkrdddd}n
ddd}td|fd|fd	|fd
|fgS )Nzmultiple-choicebatchchoicesequence)r      r   )r   r8   Z	input_idsZattention_maskZtoken_type_idsZtask_type_ids)taskr   )r(   Zdynamic_axisr,   r,   r-   inputs   s    

zErnieOnnxConfig.inputsN)r.   r/   r0   propertyr   strintr:   r,   r,   r,   r-   r3      s   r3   N)r1   collectionsr   typingr   Zconfiguration_utilsr   Zonnxr   utilsr   Z
get_loggerr.   loggerZ#ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAPr   r3   r,   r,   r,   r-   <module>   s&   
t