U
    ,-e$                     @   sD   d Z ddlmZ ddlmZ eeZdddZG dd deZ	d	S )
z Falcon configuration   )PretrainedConfig)loggingzAhttps://huggingface.co/tiiuae/falcon-40b/resolve/main/config.jsonz@https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json)ztiiuae/falcon-40bztiiuae/falcon-7bc                       sL   e Zd ZdZdZdgZd fdd	Zedd Zedd Z	dd Z
  ZS )FalconConfiga  
    This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the
    [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 65024):
            Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`FalconModel`]
        hidden_size (`int`, *optional*, defaults to 4544):
            Dimension of the hidden representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 71):
            Number of attention heads for each attention layer in the Transformer encoder.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether the model should return the last key/values attentions (not used by all models). Only relevant if
            `config.is_decoder=True`.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        hidden_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for MLP layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for attention layers.
        num_kv_heads (`int`, *optional*):
            Number of key-value heads to use per attention layer. If unset, defaults to the same value as
            `num_attention_heads`.
        alibi (`bool`, *optional*, defaults to `False`):
            Whether to use ALiBi positional biases during self-attention.
        new_decoder_architecture (`bool`, *optional*, defaults to `False`):
            Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
            arguments are ignored, as the new decoder always uses parallel attention.
        multi_query (`bool`, *optional*, defaults to `True`):
            Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
        parallel_attn (`bool`, *optional*, defaults to `True`):
            Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
            instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
        bias (`bool`, *optional*, defaults to `False`):
            Whether to use bias on Linear layers.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with, when `alibi` is `False`. Pretrained
            Falcon models with RoPE support up to 2048 tokens.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
            strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
            is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
            `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
            these scaling strategies behave:
            https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
            experimental feature, subject to breaking API changes in future versions.
        bos_token_id (`int`, *optional*, defaults to 11):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 11):
            The id of the "end-of-sequence" token.

    Example:

    ```pytho
    >>> from transformers import FalconModel, FalconConfig

    >>> # Initializing a small (2-layer) Falcon configuration
    >>> configuration = FalconConfig(num_hidden_layers=2)

    >>> # Initializing a model from the small configuration
    >>> model = FalconModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZfalconZpast_key_values         G   h㈵>{Gz?T        NF        @   c                    s   || _ |dd }|d kr|n|| _|| _|| _|| _|| _|| _|| _|	| _	|| _
|| _|
d krf|n|
| _|| _|| _|| _|| _|| _|| _|| _|| _|   t jf ||d| d S )Nn_embed)bos_token_ideos_token_id)
vocab_sizepophidden_sizenum_hidden_layersnum_attention_headslayer_norm_epsiloninitializer_range	use_cachehidden_dropoutattention_dropoutr   r   num_kv_headsalibinew_decoder_architecturemulti_queryparallel_attnbiasmax_position_embeddings
rope_thetarope_scaling_rope_scaling_validationsuper__init__)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r   r   kwargsr   	__class__ p/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/falcon/configuration_falcon.pyr'   n   s.    zFalconConfig.__init__c                 C   s   | j | j S N)r   r   r(   r,   r,   r-   head_dim   s    zFalconConfig.head_dimc                 C   s   | j  S r.   )r   r/   r,   r,   r-   rotary   s    zFalconConfig.rotaryc                 C   s   | j dkrdS | jrtdt| j tr6t| j dkrFtd| j  | j dd}| j dd}|dksr|dkrtd| |dkst|tr|d	krtd
| dS )z<
        Validate the `rope_scaling` configuration.
        Nz7`rope_scaling` is not supported when `alibi` is `True`.   zS`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, got typefactor)ZlinearZdynamiczF`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got g      ?z8`rope_scaling`'s factor field must be an float > 1, got )r$   r1   
ValueError
isinstancedictlengetfloat)r(   Zrope_scaling_typeZrope_scaling_factorr,   r,   r-   r%      s     

z%FalconConfig._rope_scaling_validation)r   r   r   r   r	   r
   Tr   r   NFFTTFr   r   Nr   r   )__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferencer'   propertyr0   r1   r%   __classcell__r,   r,   r*   r-   r      s:   N                    3

r   N)
r>   Zconfiguration_utilsr   utilsr   Z
get_loggerr;   loggerZ$FALCON_PRETRAINED_CONFIG_ARCHIVE_MAPr   r,   r,   r,   r-   <module>   s   
