U
    ,-e-                     @   s|   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 e
eZdd	d
ddZG dd deZG dd deZdS )z Flaubert configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingzMhttps://huggingface.co/flaubert/flaubert_small_cased/resolve/main/config.jsonzNhttps://huggingface.co/flaubert/flaubert_base_uncased/resolve/main/config.jsonzLhttps://huggingface.co/flaubert/flaubert_base_cased/resolve/main/config.jsonzMhttps://huggingface.co/flaubert/flaubert_large_cased/resolve/main/config.json)zflaubert/flaubert_small_casedzflaubert/flaubert_base_uncasedzflaubert/flaubert_base_casedzflaubert/flaubert_large_casedc                #       s4   e Zd ZdZdZdddddZd fdd	Z  ZS )FlaubertConfiga  
    This is the configuration class to store the configuration of a [`FlaubertModel`] or a [`TFFlaubertModel`]. It is
    used to instantiate a FlauBERT model according to the specified arguments, defining the model architecture.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the FlauBERT
    [flaubert/flaubert_base_uncased](https://huggingface.co/flaubert/flaubert_base_uncased) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        pre_norm (`bool`, *optional*, defaults to `False`):
            Whether to apply the layer normalization before or after the feed forward layer following the attention in
            each layer (Vaswani et al., Tensor2Tensor for Neural Machine Translation. 2018)
        layerdrop (`float`, *optional*, defaults to 0.0):
            Probability to drop layers during training (Fan et al., Reducing Transformer Depth on Demand with
            Structured Dropout. ICLR 2020)
        vocab_size (`int`, *optional*, defaults to 30145):
            Vocabulary size of the FlauBERT model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`FlaubertModel`] or [`TFFlaubertModel`].
        emb_dim (`int`, *optional*, defaults to 2048):
            Dimensionality of the encoder layers and the pooler layer.
        n_layer (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        n_head (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for the attention mechanism
        gelu_activation (`bool`, *optional*, defaults to `True`):
            Whether or not to use a *gelu* activation instead of *relu*.
        sinusoidal_embeddings (`bool`, *optional*, defaults to `False`):
            Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings.
        causal (`bool`, *optional*, defaults to `False`):
            Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask in
            order to only attend to the left-side context instead if a bidirectional context.
        asm (`bool`, *optional*, defaults to `False`):
            Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction
            layer.
        n_langs (`int`, *optional*, defaults to 1):
            The number of languages the model handles. Set to 1 for monolingual models.
        use_lang_emb (`bool`, *optional*, defaults to `True`)
            Whether to use language embeddings. Some models use additional language embeddings, see [the multilingual
            models page](http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings) for information
            on how to use them.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        embed_init_std (`float`, *optional*, defaults to 2048^-0.5):
            The standard deviation of the truncated_normal_initializer for initializing the embedding matrices.
        init_std (`int`, *optional*, defaults to 50257):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the
            embedding matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        bos_index (`int`, *optional*, defaults to 0):
            The index of the beginning of sentence token in the vocabulary.
        eos_index (`int`, *optional*, defaults to 1):
            The index of the end of sentence token in the vocabulary.
        pad_index (`int`, *optional*, defaults to 2):
            The index of the padding token in the vocabulary.
        unk_index (`int`, *optional*, defaults to 3):
            The index of the unknown token in the vocabulary.
        mask_index (`int`, *optional*, defaults to 5):
            The index of the masking token in the vocabulary.
        is_encoder(`bool`, *optional*, defaults to `True`):
            Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al.
        summary_type (`string`, *optional*, defaults to "first"):
            Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.

            Has to be one of the following options:

                - `"last"`: Take the last token hidden state (like XLNet).
                - `"first"`: Take the first token hidden state (like BERT).
                - `"mean"`: Take the mean of all tokens hidden states.
                - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
                - `"attn"`: Not implemented now, use multi-head attention.
        summary_use_proj (`bool`, *optional*, defaults to `True`):
            Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.

            Whether or not to add a projection after the vector extraction.
        summary_activation (`str`, *optional*):
            Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.

            Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
        summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
            Used in the sequence classification and multiple choice models.

            Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
        summary_first_dropout (`float`, *optional*, defaults to 0.1):
            Used in the sequence classification and multiple choice models.

            The dropout ratio to be used after the projection and activation.
        start_n_top (`int`, *optional*, defaults to 5):
            Used in the SQuAD evaluation script.
        end_n_top (`int`, *optional*, defaults to 5):
            Used in the SQuAD evaluation script.
        mask_token_id (`int`, *optional*, defaults to 0):
            Model agnostic parameter to identify masked tokens when generating text in an MLM context.
        lang_id (`int`, *optional*, defaults to 1):
            The ID of the language used by the model. This parameter is used when generating text in a given language.
    Zflaubertemb_dimn_headsn_layers
vocab_size)Zhidden_sizeZnum_attention_headsZnum_hidden_layersn_wordsF        u           皙?T      ;f?-q={Gz?r      r      firstNc$           %         s   || _ || _|| _|| _|| _|| _|| _|| _|	| _|
| _	|| _
|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _| | _|!| _ d|$kr|$d | _!t" j#f |"|#d|$ dS )zConstructs FlaubertConfig.r   )pad_token_idbos_token_idN)$pre_norm	layerdropr   r	   r   r
   dropoutattention_dropoutgelu_activationsinusoidal_embeddingscausalasmn_langsuse_lang_emblayer_norm_eps	bos_index	eos_index	pad_index	unk_index
mask_index
is_encodermax_position_embeddingsembed_init_stdinit_stdsummary_typesummary_use_projsummary_activationsummary_proj_to_labelssummary_first_dropoutstart_n_top	end_n_topmask_token_idlang_idr   super__init__)%selfr   r   r   r	   r   r
   r    r!   r"   r#   r$   r%   r&   r'   r/   r0   r(   r1   r)   r*   r+   r,   r-   r.   r2   r3   r4   r5   r6   r7   r8   r9   r:   r   r   kwargs	__class__ t/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/flaubert/configuration_flaubert.pyr<      sH    (
zFlaubertConfig.__init__)#Fr   r   r   r   r   r   r   TFFFr   Tr   r   r   r   r   r   r   r   r   Tr   TNTr   r   r   r   r   r   r   )__name__
__module____qualname____doc__Z
model_typeZattribute_mapr<   __classcell__rA   rA   r?   rB   r   "   sV   g	                                   r   c                   @   s.   e Zd Zeeeeeef f dddZdS )FlaubertOnnxConfig)returnc                 C   s6   | j dkrdddd}n
ddd}td|fd|fgS )	Nzmultiple-choicebatchchoicesequence)r   r   r   )r   r   Z	input_idsZattention_mask)taskr   )r=   Zdynamic_axisrA   rA   rB   inputs   s    

zFlaubertOnnxConfig.inputsN)rC   rD   rE   propertyr   strintrN   rA   rA   rA   rB   rH      s   rH   N)rF   collectionsr   typingr   Zconfiguration_utilsr   Zonnxr   utilsr   Z
get_loggerrC   loggerZ&FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAPr   rH   rA   rA   rA   rB   <module>   s   
 A