U
    ,-eW,                     @   sb   d dl Z d dlmZ ddlmZ ddlmZ eeZ	ddiZ
G dd	 d	eZG d
d deZdS )    N)Union   )PretrainedConfig)loggingzmicrosoft/git-basezBhttps://huggingface.co/microsoft/git-base/resolve/main/config.jsonc                       sD   e Zd ZdZdZd fdd	Zeeee	j
f ddddZ  ZS )GitVisionConfiga
  
    This is the configuration class to store the configuration of a [`GitVisionModel`]. It is used to instantiate a GIT
    vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the vision encoder of the GIT
    [microsoft/git-base](https://huggingface.co/microsoft/git-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

    Example:

    ```python
    >>> from transformers import GitVisionConfig, GitVisionModel

    >>> # Initializing a GitVisionConfig with microsoft/git-base style configuration
    >>> configuration = GitVisionConfig()

    >>> # Initializing a GitVisionModel (with random weights) from the microsoft/git-base style configuration
    >>> model = GitVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zgit_vision_model         r         
quick_geluh㈵>        {Gz?c                    sT   t  jf | || _|| _|| _|| _|| _|| _|| _|| _	|
| _
|	| _|| _d S )N)super__init__hidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_channels
patch_size
image_sizeinitializer_rangeattention_dropoutlayer_norm_eps
hidden_act)selfr   r   r   r   r   r   r   r   r   r   r   kwargs	__class__ j/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/git/configuration_git.pyr   P   s    zGitVisionConfig.__init__r   )pretrained_model_name_or_pathreturnc                 K   s~   |  | | j|f|\}}|ddkr2|d }d|krpt| drp|d | jkrptd|d  d| j d | j|f|S )N
model_typegitvision_configzYou are using a model of type z  to instantiate a model of type zN. This is not supported for all configurations of models and can yield errors.)Z_set_token_in_kwargsZget_config_dictgethasattrr%   loggerwarning	from_dict)clsr#   r   Zconfig_dictr!   r!   r"   from_pretrainedm   s    
 zGitVisionConfig.from_pretrained)r   r   r	   r	   r   r
   r   r   r   r   r   )__name__
__module____qualname____doc__r%   r   classmethodr   strosPathLiker.   __classcell__r!   r!   r   r"   r      s    /           r   c                       s&   e Zd ZdZdZd fdd	Z  ZS )	GitConfiga  
    This is the configuration class to store the configuration of a [`GitModel`]. It is used to instantiate a GIT model
    according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the GIT
    [microsoft/git-base](https://huggingface.co/microsoft/git-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`GitVisionConfig`].
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the GIT model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`GitModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 6):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 1024):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        num_image_with_embedding (`int`, *optional*):
            The number of temporal embeddings to add, in case the model is used for video captioning/VQA.

    Examples:

    ```python
    >>> from transformers import GitConfig, GitModel

    >>> # Initializing a GIT microsoft/git-base style configuration
    >>> configuration = GitConfig()

    >>> # Initializing a model (with random weights) from the microsoft/git-base style configuration
    >>> model = GitModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```r&   N:w  r      r	   r   gelu皙?   r   -q=r   absoluteTFe   f   c                    s   t  jf |||d| |d kr0i }td tf || _|| _|| _|| _|| _	|| _
|| _|| _|	| _|
| _|| _|| _|| _|| _|| _|| _|| _|| _d S )N)bos_token_ideos_token_idpad_token_idzLvision_config is None. initializing the GitVisionConfig with default values.)r   r   r*   infor   r'   
vocab_sizer   r   r   r   r   hidden_dropout_probattention_probs_dropout_probmax_position_embeddingsr   r   position_embedding_type	use_cachetie_word_embeddingsnum_image_with_embeddingrB   rC   )r   r'   rF   r   r   r   r   r   rG   rH   rI   r   r   rD   rJ   rK   rL   rB   rC   rM   r   r   r!   r"   r      s,    
zGitConfig.__init__)Nr9   r   r:   r	   r   r;   r<   r<   r=   r   r>   r   r?   TFr@   rA   N)r/   r0   r1   r2   r%   r   r7   r!   r!   r   r"   r8      s,   >                   r8   )r5   typingr   Zconfiguration_utilsr   utilsr   Z
get_loggerr/   r*   Z!GIT_PRETRAINED_CONFIG_ARCHIVE_MAPr   r8   r!   r!   r!   r"   <module>   s   
 b