U
    ,È-en  ã                   @   s0   d Z ddlmZ ddlmZ G dd„ deƒZdS )z$
Image/Text processor class for GIT
é   )ÚProcessorMixin)ÚBatchEncodingc                       sV   e Zd ZdZddgZdZdZ‡ fdd„Zdd	d
„Zdd„ Z	dd„ Z
edd„ ƒZ‡  ZS )ÚGitProcessora  
    Constructs a GIT processor which wraps a CLIP image processor and a BERT tokenizer into a single processor.

    [`GitProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BertTokenizerFast`]. See the
    [`~GitProcessor.__call__`] and [`~GitProcessor.decode`] for more information.

    Args:
        image_processor ([`AutoImageProcessor`]):
            The image processor is a required input.
        tokenizer ([`AutoTokenizer`]):
            The tokenizer is a required input.
    Úimage_processorÚ	tokenizerZAutoImageProcessorZAutoTokenizerc                    s   t ƒ  ||¡ | j| _d S )N)ÚsuperÚ__init__r   Zcurrent_processor)Úselfr   r   ©Ú	__class__© úg/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/git/processing_git.pyr   (   s    zGitProcessor.__init__Nc                 K   s”   |dkr|dkrt dƒ‚|dk	r6| j|fd|i|—Ž}|dk	rT| j|fd|i|—Ž}|dk	rr|dk	rr|j|d< |S |dk	r~|S ttf |Ž|dS dS )a;	  
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
        of the above two methods for more information.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
                number of channels, H and W are image height and width.

            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        Nz?You have to specify either text or images. Both cannot be none.Úreturn_tensorsÚpixel_values)ÚdataZtensor_type)Ú
ValueErrorr   r   r   r   Údict)r	   ÚtextZimagesr   ÚkwargsÚencodingZimage_featuresr   r   r   Ú__call__,   s    $
zGitProcessor.__call__c                 O   s   | j j||ŽS )zÁ
        This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        )r   Úbatch_decode©r	   Úargsr   r   r   r   r   a   s    zGitProcessor.batch_decodec                 O   s   | j j||ŽS )z»
        This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        )r   Údecoder   r   r   r   r   h   s    zGitProcessor.decodec                 C   s
   dddgS )NZ	input_idsZattention_maskr   r   )r	   r   r   r   Úmodel_input_nameso   s    zGitProcessor.model_input_names)NNN)Ú__name__Ú
__module__Ú__qualname__Ú__doc__Ú
attributesZimage_processor_classZtokenizer_classr   r   r   r   Úpropertyr   Ú__classcell__r   r   r
   r   r      s   
5r   N)r   Zprocessing_utilsr   Ztokenization_utils_baser   r   r   r   r   r   Ú<module>   s   