U
    ,-eUC                     @   s   d Z ddlZddlmZ ddlmZ ddlmZ ddlm	Z	 dd	l
mZ e	eZd
diZG dd deZG dd deZG dd deZdS )z! InstructBLIP model configuration    N)Union   )PretrainedConfig)!MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)logging   )CONFIG_MAPPINGz Salesforce/instruct-blip-flan-t5zPhttps://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.jsonc                       sD   e Zd ZdZdZd fdd	Zeeee	j
f ddddZ  ZS )InstructBlipVisionConfigaW  
    This is the configuration class to store the configuration of a [`InstructBlipVisionModel`]. It is used to
    instantiate a InstructBLIP vision encoder according to the specified arguments, defining the model architecture.
    Instantiating a configuration defaults will yield a similar configuration to that of the InstructBLIP
    [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 1408):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 6144):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 39):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 14):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. to 1e-5): The epsilon used by the layer
            normalization layers.
        layer_norm_eps (`float`, *optional*, defaults to 1e-6):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 1e-10):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries and values in the self-attention layers.

    Example:

    ```python
    >>> from transformers import InstructBlipVisionConfig, InstructBlipVisionModel

    >>> # Initializing a InstructBlipVisionConfig with Salesforce/instruct-blip-flan-t5 style configuration
    >>> configuration = InstructBlipVisionConfig()

    >>> # Initializing a InstructBlipVisionModel (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration
    >>> model = InstructBlipVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zinstructblip_vision_model     '            geluư>        绽|=Tc                    sT   t  jf | || _|| _|| _|| _|| _|| _|
| _|	| _	|| _
|| _|| _d S )N)super__init__hidden_sizeintermediate_sizenum_hidden_layersnum_attention_heads
patch_size
image_sizeinitializer_rangeattention_dropoutlayer_norm_eps
hidden_actqkv_bias)selfr   r   r   r   r   r   r   r   r   r   r    kwargs	__class__ |/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/instructblip/configuration_instructblip.pyr   V   s    z!InstructBlipVisionConfig.__init__r   pretrained_model_name_or_pathreturnc                 K   s~   |  | | j|f|\}}|ddkr2|d }d|krpt| drp|d | jkrptd|d  d| j d | j|f|S )N
model_typeinstructblipvision_configYou are using a model of type   to instantiate a model of type N. This is not supported for all configurations of models and can yield errors.Z_set_token_in_kwargsZget_config_dictgethasattrr*   loggerwarning	from_dictclsr(   r"   Zconfig_dictr%   r%   r&   from_pretraineds   s    
 z(InstructBlipVisionConfig.from_pretrained)r
   r   r   r   r   r   r   r   r   r   T__name__
__module____qualname____doc__r*   r   classmethodr   strosPathLiker8   __classcell__r%   r%   r#   r&   r	   !   s    2           r	   c                       sD   e Zd ZdZdZd fdd	Zeeee	j
f ddddZ  ZS )InstructBlipQFormerConfigaO  
    This is the configuration class to store the configuration of a [`InstructBlipQFormerModel`]. It is used to
    instantiate a InstructBLIP Querying Transformer (Q-Former) model according to the specified arguments, defining the
    model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
    the InstructBLIP [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5)
    architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs.
    Read the documentation from [`PretrainedConfig`] for more information.

    Note that [`InstructBlipQFormerModel`] is very similar to [`BertLMHeadModel`] with interleaved cross-attention.

    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the Q-Former model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling the model.
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        cross_attention_frequency (`int`, *optional*, defaults to 2):
            The frequency of adding cross-attention to the Transformer layers.
        encoder_hidden_size (`int`, *optional*, defaults to 1408):
            The hidden size of the hidden states for cross-attention.

    Examples:

    ```python
    >>> from transformers import InstructBlipQFormerConfig, InstructBlipQFormerModel

    >>> # Initializing a InstructBLIP Salesforce/instruct-blip-flan-t5 style configuration
    >>> configuration = InstructBlipQFormerConfig()

    >>> # Initializing a model (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration
    >>> model = InstructBlipQFormerModel(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zinstructblip_qformer:w           r   皙?   {Gz?-q=r   absoluter   r
   c                    sn   t  jf d|i| || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _d S )Npad_token_id)r   r   
vocab_sizer   r   r   r   r   hidden_dropout_probattention_probs_dropout_probmax_position_embeddingsr   r   position_embedding_typecross_attention_frequencyencoder_hidden_size)r!   rN   r   r   r   r   r   rO   rP   rQ   r   r   rM   rR   rS   rT   r"   r#   r%   r&   r      s    z"InstructBlipQFormerConfig.__init__r   r'   c                 K   s~   |  | | j|f|\}}|ddkr2|d }d|krpt| drp|d | jkrptd|d  d| j d | j|f|S )Nr*   r+   qformer_configr-   r.   r/   r0   r6   r%   r%   r&   r8      s    
 z)InstructBlipQFormerConfig.from_pretrained)rD   rE   rF   rF   rG   r   rH   rH   rI   rJ   rK   r   rL   r   r
   r9   r%   r%   r#   r&   rC      s(   <               $rC   c                       s<   e Zd ZdZdZd
 fdd	Zeeee	ddd	Z
  ZS )InstructBlipConfiga	  
    [`InstructBlipConfig`] is the configuration class to store the configuration of a
    [`InstructBlipForConditionalGeneration`]. It is used to instantiate a InstructBLIP model according to the specified
    arguments, defining the vision model, Q-Former model and language model configs. Instantiating a configuration with
    the defaults will yield a similar configuration to that of the InstructBLIP
    [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`InstructBlipVisionConfig`].
        qformer_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`InstructBlipQFormerConfig`].
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize any [`PretrainedConfig`].
        num_query_tokens (`int`, *optional*, defaults to 32):
            The number of query tokens passed through the Transformer.

        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import (
    ...     InstructBlipVisionConfig,
    ...     InstructBlipQFormerConfig,
    ...     OPTConfig,
    ...     InstructBlipConfig,
    ...     InstructBlipForConditionalGeneration,
    ... )

    >>> # Initializing a InstructBlipConfig with Salesforce/instruct-blip-flan-t5 style configuration
    >>> configuration = InstructBlipConfig()

    >>> # Initializing a InstructBlipForConditionalGeneration (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration
    >>> model = InstructBlipForConditionalGeneration(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a InstructBlipConfig from a InstructBlipVisionConfig, InstructBlipQFormerConfig and any PretrainedConfig

    >>> # Initializing InstructBLIP vision, InstructBLIP Q-Former and language model configurations
    >>> vision_config = InstructBlipVisionConfig()
    >>> qformer_config = InstructBlipQFormerConfig()
    >>> text_config = OPTConfig()

    >>> config = InstructBlipConfig.from_text_vision_configs(vision_config, qformer_config, text_config)
    ```r+   N    c                    s   t  jf | |d kr$i }td |d kr:i }td |d krPi }td tf || _tf || _d|krx|d nd}t| f || _	| j	j
| _
| j	j| _|| _| jj| j_| j	jtk| _d| _d| _d S )NzUvision_config is None. initializing the InstructBlipVisionConfig with default values.zWqformer_config is None. Initializing the InstructBlipQFormerConfig with default values.zTtext_config is None. Initializing the text config with default values (`OPTConfig`).r*   optg      ?rJ   )r   r   r3   infor	   r,   rC   rU   r   text_configZtie_word_embeddingsZis_encoder_decodernum_query_tokensr   rT   r*   r   Zuse_decoder_only_language_modelZinitializer_factorr   )r!   r,   rU   rZ   r[   r"   Ztext_model_typer#   r%   r&   r   4  s*    




zInstructBlipConfig.__init__r,   rU   rZ   c                 K   s"   | f |  |  |  d|S )z
        Instantiate a [`InstructBlipConfig`] (or a derived class) from a InstructBLIP vision model, Q-Former and
        language model configurations.

        Returns:
            [`InstructBlipConfig`]: An instance of a configuration object
        r\   )to_dict)r7   r,   rU   rZ   r"   r%   r%   r&    from_vision_qformer_text_configsQ  s    z3InstructBlipConfig.from_vision_qformer_text_configs)NNNrW   )r:   r;   r<   r=   r*   r   r>   r	   rC   r   r^   rB   r%   r%   r#   r&   rV      s   5rV   )r=   r@   typingr   Zconfiguration_utilsr   Zmodels.auto.modeling_autor   utilsr   autor   Z
get_loggerr:   r3   Z*INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAPr	   rC   rV   r%   r%   r%   r&   <module>   s   
 ev