U
    ,È-eÑ  ã                   @   sR   d Z ddlmZmZ ddlmZ ddlmZ e e	¡Z
ddiZG dd	„ d	eƒZd
S )z LED model configurationé    )ÚListÚUnioné   )ÚPretrainedConfig)Úloggingzallenai/led-base-16384zFhttps://huggingface.co/allenai/led-base-16384/resolve/main/config.jsonc                       sF   e Zd ZdZdZdddddœZdeee ef dœ‡ fdd„Z	‡  Z
S )Ú	LEDConfigaÿ  
    This is the configuration class to store the configuration of a [`LEDModel`]. It is used to instantiate an LED
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the LED
    [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50265):
            Vocabulary size of the LED model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`LEDModel`] or [`TFLEDModel`].
        d_model (`int`, *optional*, defaults to 1024):
            Dimensionality of the layers and the pooler layer.
        encoder_layers (`int`, *optional*, defaults to 12):
            Number of encoder layers.
        decoder_layers (`int`, *optional*, defaults to 12):
            Number of decoder layers.
        encoder_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        decoder_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer decoder.
        decoder_ffn_dim (`int`, *optional*, defaults to 4096):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        encoder_ffn_dim (`int`, *optional*, defaults to 4096):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        classifier_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for classifier.
        max_encoder_position_embeddings (`int`, *optional*, defaults to 16384):
            The maximum sequence length that the encoder might ever be used with.
        max_decoder_position_embeddings (`int`, *optional*, defaults to 16384):
            The maximum sequence length that the decoder might ever be used with.
        init_std (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        encoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        decoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models)

    Example:

    ```python
    >>> from transformers import LEDModel, LEDConfig

    >>> # Initializing a LED allenai/led-base-16384 style configuration
    >>> configuration = LEDConfig()

    >>> # Initializing a model from the allenai/led-base-16384 style configuration
    >>> model = LEDModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZledÚencoder_attention_headsÚd_modelÚattention_dropoutÚinit_std)Znum_attention_headsZhidden_sizeZattention_probs_dropout_probZinitializer_rangeéYÄ  é @  é   é   é   é   ç        TÚgeluçš™™™™™¹?ç{®Gáz”?é   é   r   é   )Úattention_windowc                    s    || _ || _|| _|| _|| _|| _|| _|| _|| _|	| _	|| _
|| _|| _|| _|| _|
| _|| _|| _|| _|| _|| _tƒ jf |||||dœ|—Ž d S )N)Úpad_token_idÚbos_token_idÚeos_token_idÚis_encoder_decoderÚdecoder_start_token_id)Ú
vocab_sizeÚmax_encoder_position_embeddingsÚmax_decoder_position_embeddingsr	   Úencoder_ffn_dimÚencoder_layersr   Údecoder_ffn_dimÚdecoder_layersÚdecoder_attention_headsÚdropoutr
   Úactivation_dropoutÚactivation_functionr   Úencoder_layerdropÚdecoder_layerdropÚclassifier_dropoutÚ	use_cacheZnum_hidden_layersr   ÚsuperÚ__init__)Úselfr   r    r!   r#   r"   r   r%   r$   r&   r*   r+   r-   r   r)   r	   r'   r
   r(   r   r   r,   r   r   r   r   Úkwargs©Ú	__class__© új/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/led/configuration_led.pyr/   l   s<    ûúzLEDConfig.__init__)r   r   r   r   r   r   r   r   r   r   r   TTr   r   r   r   r   r   r   r   r   r   r   r   )Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typeZattribute_mapr   r   Úintr/   Ú__classcell__r4   r4   r2   r5   r      sF   Dü	                         æær   N)r9   Útypingr   r   Zconfiguration_utilsr   Úutilsr   Z
get_loggerr6   ÚloggerZ!LED_PRETRAINED_CONFIG_ARCHIVE_MAPr   r4   r4   r4   r5   Ú<module>   s   
 ÿ