U
    ,-e!!                     @   sp   d Z ddlmZ ddlmZ ddlmZ ddlmZ e	e
Zddd	d
dZG dd deZG dd deZdS )z LongT5 model configuration    )Mapping   )PretrainedConfig)OnnxSeq2SeqConfigWithPast)loggingzFhttps://huggingface.co/google/long-t5-local-base/blob/main/config.jsonzGhttps://huggingface.co/google/long-t5-local-large/blob/main/config.jsonzHhttps://huggingface.co/google/long-t5-tglobal-base/blob/main/config.jsonzIhttps://huggingface.co/google/long-t5-tglobal-large/blob/main/config.json)zgoogle/long-t5-local-basezgoogle/long-t5-local-largezgoogle/long-t5-tglobal-basezgoogle/long-t5-tglobal-largec                       s8   e Zd ZdZdZdgZddddZd fdd	Z  ZS )LongT5Configa  
    This is the configuration class to store the configuration of a [`LongT5Model`] or a [`FlaxLongT5Model`]. It is
    used to instantiate a LongT5 model according to the specified arguments, defining the model architecture.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the LongT5
    [google/long-t5-local-base](https://huggingface.co/google/long-t5-local-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Arguments:
        vocab_size (`int`, *optional*, defaults to 32128):
            Vocabulary size of the LongT5 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`LongT5Model`].
        d_model (`int`, *optional*, defaults to 512):
            Size of the encoder layers and the pooler layer.
        d_kv (`int`, *optional*, defaults to 64):
            Size of the key, query, value projections per attention head. `d_kv` has to be equal to `d_model //
            num_heads`.
        d_ff (`int`, *optional*, defaults to 2048):
            Size of the intermediate feed forward layer in each `LongT5Block`.
        num_layers (`int`, *optional*, defaults to 6):
            Number of hidden layers in the Transformer encoder.
        num_decoder_layers (`int`, *optional*):
            Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
        num_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        local_radius (`int`, *optional*, defaults to 127)
            Number of tokens to the left/right for each token to locally self-attend in a local attention mechanism.
        global_block_size (`int`, *optional*, defaults to 16)
            Lenght of blocks an input sequence is divided into for a global token representation. Used only for
            `encoder_attention_type = "transient-global"`.
        relative_attention_num_buckets (`int`, *optional*, defaults to 32):
            The number of buckets to use for each attention layer.
        relative_attention_max_distance (`int`, *optional*, defaults to 128):
            The maximum distance of the longer sequences for the bucket separation.
        dropout_rate (`float`, *optional*, defaults to 0.1):
            The ratio for all dropout layers.
        layer_norm_eps (`float`, *optional*, defaults to 1e-6):
            The epsilon used by the layer normalization layers.
        initializer_factor (`float`, *optional*, defaults to 1):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        feed_forward_proj (`string`, *optional*, defaults to `"relu"`):
            Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. LongT5v1.1 uses the
            `"gated-gelu"` feed forward projection. Original LongT5 implementation uses `"gated-gelu"`.
        encoder_attention_type (`string`, *optional*, defaults to `"local"`):
            Type of encoder attention to be used. Should be one of `"local"` or `"transient-global"`, which are
            supported by LongT5 implementation.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
    Zlongt5Zpast_key_valuesd_model	num_heads
num_layers)Zhidden_sizeZnum_attention_headsZnum_hidden_layers}     @         N                皙?ư>      ?reluTlocalr      c                    s   || _ || _|| _|| _|| _|d k	r*|n| j| _|| _|| _|	| _|
| _	|| _
|| _|| _|| _|| _|| _|| _| jd}|d | _|d dk| _t|dkr|d dkst|dkrtd| d|d	krd
| _t jf |||d| d S )N-r   Zgatedr      z`feed_forward_proj`: z is not a valid activation function of the dense layer.Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. 'gated-gelu' or 'relu'z
gated-geluZgelu_new)pad_token_ideos_token_idis_encoder_decoder)
vocab_sizer   d_kvd_ffr
   num_decoder_layersr	   local_radiusglobal_block_sizerelative_attention_num_bucketsrelative_attention_max_distancedropout_ratelayer_norm_epsiloninitializer_factorfeed_forward_projencoder_attention_type	use_cachesplitZdense_act_fnZis_gated_actlen
ValueErrorsuper__init__)selfr!   r   r"   r#   r
   r$   r	   r%   r&   r'   r(   r)   r*   r+   r,   r    r-   r.   r   r   kwargsZact_info	__class__ p/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/longt5/configuration_longt5.pyr3   Y   sB    
$
zLongT5Config.__init__)r   r   r   r   r   Nr   r   r   r   r   r   r   r   r   Tr   Tr   r   )	__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferenceZattribute_mapr3   __classcell__r8   r8   r6   r9   r   !   s2   3                    r   c                   @   s@   e Zd Zeeeeeef f dddZeedddZdS )LongT5OnnxConfig)returnc                 C   sx   ddddddd}| j rDd|d d< ddi|d	< dd
d|d< nddd|d	< ddd|d< | j rt| j|dd |S )NbatchZencoder_sequence)r   r   )Z	input_idsattention_maskz past_encoder_sequence + sequencerB   r   r   Zdecoder_input_idsz past_decoder_sequence + sequenceZdecoder_attention_maskZdecoder_sequenceinputs)	direction)Zuse_pastZfill_with_past_key_values_)r4   Zcommon_inputsr8   r8   r9   rC      s    zLongT5OnnxConfig.inputsc                 C   s   dS )N   r8   )r4   r8   r8   r9   default_onnx_opset   s    z#LongT5OnnxConfig.default_onnx_opsetN)	r:   r;   r<   propertyr   strintrC   rF   r8   r8   r8   r9   r?      s    r?   N)r=   typingr   Zconfiguration_utilsr   Zonnxr   utilsr   Z
get_loggerr:   loggerZ$LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAPr   r?   r8   r8   r8   r9   <module>   s   
z