U
    ,-e                     @   sD   d Z ddlmZ ddlmZ eeZdddZG dd deZ	d	S )
z Mistral model configuration   )PretrainedConfig)loggingzIhttps://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.jsonzRhttps://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json)zmistralai/Mistral-7B-v0.1z"mistralai/Mistral-7B-Instruct-v0.1c                       s,   e Zd ZdZdZdgZd fdd	Z  ZS )MistralConfiga>  
    This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
    Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.

    [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
    [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`MistralModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 14336):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 4096*32):
            The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
            allows sequence of up to 4096*32 tokens.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        tie_word_embeddings(`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        sliding_window (`int`, *optional*, defaults to 4096):
            Sliding window attention window size. If not specified, will default to `4096`.

        Example:

    ```python
    >>> from transformers import MistralModel, MistralConfig

    >>> # Initializing a Mistral 7B style configuration
    >>> configuration = MistralConfig()

    >>> # Initializing a model from the Mistral 7B style configuration
    >>> model = MistralModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZmistralZpast_key_values }      8         silu   {Gz?ư>TN      F     @c                    sz   || _ || _|| _|| _|| _|| _|| _|d kr6|}|| _|| _|	| _	|
| _
|| _|| _t jf ||||d| d S )N)pad_token_idbos_token_ideos_token_idtie_word_embeddings)
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headssliding_windownum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetasuper__init__)selfr   r   r   r   r   r   r   r   r   r   r    r   r   r   r   r!   r   kwargs	__class__ r/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/mistral/configuration_mistral.pyr#   b   s.    zMistralConfig.__init__)r   r   r   r   r   r	   r
   r   r   r   TNr   r   Fr   r   )__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferencer#   __classcell__r(   r(   r&   r)   r      s*   A                 r   N)
r-   Zconfiguration_utilsr   utilsr   Z
get_loggerr*   loggerZ%MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAPr   r(   r(   r(   r)   <module>   s   
