U
    ,-eN,                     @   sj   d Z ddlmZmZmZ erddlmZ ddlmZ e	e
ZddiZG dd	 d	eZG d
d deZdS )z Mpt configuration    )TYPE_CHECKINGOptionalUnion   )PretrainedConfig)loggingzmosaicml/mpt-7bz?https://huggingface.co/mosaicml/mpt-7b/resolve/main/config.jsonc                
       s4   e Zd ZdZd fd	d
	ZeddddZ  ZS )MptAttentionConfiga
  
    This is the configuration class to store the configuration of a [`MptAttention`] class. It is used to instantiate
    attention layers according to the specified arguments, defining the layers architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the MPT
    [mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b) architecture. Most of the arguments are kept for backward
    compatibility with previous MPT models that are hosted on the Hub (previously with `trust_remote_code=True`).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        attn_type (`str`, *optional*, defaults to `"multihead_attention"`):
            type of attention to use. Options: `"multihead_attention"`, `"multiquery_attention"`.
        attn_pdrop (`float`, *optional*, defaults to 0.0):
            The dropout probability for the attention layers.
        attn_impl (`str`, *optional*, defaults to `"torch"`):
            The attention implementation to use. One of `"torch"`, `"flash"`, or `"triton"`.
        clip_qkv (`float`, *optional*):
            If not `None`, clip the queries, keys, and values in the attention layer to this value.
        softmax_scale (`float`, *optional*, defaults to `None`):
            If not `None`, scale the softmax in the attention layer by this value. If `None`, will default to
            `1/sqrt(hidden_size)`.
        prefix_lm (`bool`, *optional*, defaults to `False`)):
            Whether the model should operate as a Prefix LM. This requires passing an extra `prefix_mask` argument
            which indicates which tokens belong to the prefix. Tokens in the prefix can attend to one another
            bi-directionally. Tokens outside the prefix use causal attention.
        qk_ln (`bool`, *optional*, defaults to `False`):
            Whether to apply layer normalization to the queries and keys in the attention layer.
        attn_uses_sequence_id (`bool`, *optional*, defaults to `False`)):
            Whether to restrict attention to tokens that have the same token_type_ids. When the model is in `train`
            mode, this requires passing an extra *token_type_ids* argument which indicates which sub-sequence each
            token belongs to. Defaults to `False` meaning any provided *token_type_ids* will be ignored.
        alibi (`bool`, *optional*, defaults to `True`):
            Whether or not to use the alibi bias instead of positional embedding.
        alibi_bias_max (`int`, *optional*, defaults to 8):
            The maximum value of the alibi bias.
    multihead_attentionr   torchNFT   c                    s`   t    || _|| _|| _|| _|| _|| _|| _|	| _	|| _
|
| _|dkr\td| d S )N)r	   Zmultiquery_attentionzX`attn_type` has to be either `multihead_attention` or `multiquery_attention`. Received: )super__init__	attn_type
attn_pdrop	attn_implclip_qkvsoftmax_scale	prefix_lmattn_uses_sequence_idalibiqk_lnalibi_bias_max
ValueError)selfr   r   r   r   r   r   r   r   r   r   kwargs	__class__ j/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/mpt/configuration_mpt.pyr   H   s    
zMptAttentionConfig.__init__r   )returnc                 K   s~   |  | | j|f|\}}|ddkr2|d }d|krpt| drp|d | jkrptd|d  d| j d | j|f|S )N
model_typemptattn_configzYou are using a model of type z  to instantiate a model of type zN. This is not supported for all configurations of models and can yield errors.)Z_set_token_in_kwargsZget_config_dictgethasattrr    loggerwarning	from_dict)clsZpretrained_model_name_or_pathr   Zconfig_dictr   r   r   from_pretrainedg   s    
 z"MptAttentionConfig.from_pretrained)
r	   r   r
   NNFFFTr   )__name__
__module____qualname____doc__r   classmethodr)   __classcell__r   r   r   r   r   !   s   (          r   c                       sf   e Zd ZdZdZddddZdeeeeeeeeeee	e
eeee
f  eeee
ed fddZ  ZS )	MptConfiga!  
    This is the configuration class to store the configuration of a [`MptModel`]. It is used to instantiate a Mpt model
    according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to the Mpt-7b architecture
    [mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        d_model (`int`, *optional*, defaults to 2048):
            Dimensionality of the embeddings and hidden states.
        n_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        n_layers (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer encoder.
        expansion_ratio (`int`, *optional*, defaults to 4):
            The ratio of the up/down scale in the MLP.
        max_seq_len (`int`, *optional*, defaults to 2048):
            The maximum sequence length of the model.
        vocab_size (`int`, *optional*, defaults to 50368):
            Vocabulary size of the Mpt model. Defines the maximum number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`MptModel`]. Check [this
            discussion](https://huggingface.co/bigscience/mpt/discussions/120#633d28389addb8530b406c2a) on how the
            `vocab_size` has been defined.
        resid_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout probability applied to the attention output before combining with residual.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
            The epsilon to use in the layer normalization layers.
        emb_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout probability for the embedding layer.
        learned_pos_emb (`bool`, *optional*, defaults to `False`):
            Whether to use learned positional embeddings.
        attn_config (`dict`, *optional*):
            A dictionary used to configure the model's attention module.
        init_device (`str`, *optional*):
            The device to use for parameter initialization. Defined for backward compatibility
        logit_scale (`float`, *optional*):
            If not None, scale the logits by this value.
        no_bias (`bool`, *optional*, defaults to `True`):
            Whether to use bias in all linear layers.
        verbose (`int`, *optional*, defaults to 0):
            The verbosity level to use for logging. Used in the previous versions of MPT models for logging. This
            argument is deprecated.
        embedding_fraction (`float`, *optional*, defaults to 1.0):
            The fraction to scale the gradients of the embedding layer by.
        norm_type (`str`, *optional*, defaults to `"low_precision_layernorm"`):
            Type of layer norm to use. All MPT models uses the same layer norm implementation. Defined for backward
            compatibility.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

    Example:

    ```python
    >>> from transformers import MptConfig, MptModel

    >>> # Initializing a Mpt configuration
    >>> configuration = MptConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = MptModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    r!   n_headsd_modeln_layers)Znum_attention_headsZhidden_sizeZnum_hidden_layers                      h㈵>TNcpur         ?low_precision_layernormF{Gz?)r2   r1   r3   expansion_ratiomax_seq_len
vocab_sizeresid_pdroplayer_norm_epsilon	emb_pdroplearned_pos_embr"   init_devicelogit_scaleno_biasverboseembedding_fraction	norm_type	use_cachec                    s   |d krt  | _nt|tr*t f || _n|| _|| _|| _|| _|| _|| _|| _	|| _
|	| _|
| _|| _|| _|| _|| _|| _|| _|| _|| _|| _t jf | d S )N)r   r"   
isinstancedictr2   r1   r3   r?   r@   rA   rB   rD   rE   rF   rG   rH   rI   rJ   rK   rC   rL   initializer_ranger   r   )r   r2   r1   r3   r?   r@   rA   rB   rC   rD   rE   r"   rF   rG   rH   rI   rJ   rK   rL   rO   r   r   r   r   r      s0    

zMptConfig.__init__)r4   r5   r6   r7   r4   r8   r9   r:   r9   TNr;   NTr   r<   r=   Fr>   )r*   r+   r,   r-   r    Zattribute_mapintfloatboolr   strr   r   r   r/   r   r   r   r   r0   y   sZ   G                   r0   N)r-   typingr   r   r   Zconfiguration_utilsr   utilsr   Z
get_loggerr*   r%   Z!MPT_PRETRAINED_CONFIG_ARCHIVE_MAPr   r0   r   r   r   r   <module>   s   
 X