U
    ,-e;                     @   sB   d Z ddlmZ ddlmZ eeZddiZG dd deZ	dS )	z Persimmon model configuration   )PretrainedConfig)loggingzadept/persimmon-8b-basezGhttps://huggingface.co/adept/persimmon-8b-base/resolve/main/config.jsonc                       s4   e Zd ZdZdZdgZd fdd	Zdd Z  ZS )PersimmonConfigau  
    This is the configuration class to store the configuration of a [`PersimmonModel`]. It is used to instantiate an
    Persimmon model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the
    [adept/persimmon-8b-base](https://huggingface.co/adept/persimmon-8b-base).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 262144):
            Vocabulary size of the Persimmon model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`PersimmonModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 16384):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 36):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 64):
            Number of attention heads for each attention layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 16384):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        tie_word_embeddings(`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 25000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
            strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
            is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
            `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
            these scaling strategies behave:
            https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
            is an experimental feature, subject to breaking API changes in future versions.
        qk_layernorm (`bool`, *optional*, default to `True`):
            Whether or not to normalize the Queries and Keys after projecting the hidden states
        hidden_dropout (`float`, *optional*, default to 0.0):
            The dropout ratio after applying the MLP to the hidden states.
        attention_dropout (`float`, *optional*, default to 0.0):
            The dropout ratio after computing the attention scores.
        partial_rotary_factor (`float`, *optional*, default to 0.5):
            Percentage of the query and keys which will have rotary embedding.

        Example:

    ```python
    >>> from transformers import PersimmonModel, PersimmonConfig

    >>> # Initializing a Persimmon persimmon-7b style configuration
    >>> configuration = PersimmonConfig()
    ```Z	persimmonZpast_key_values       @  $   @   relu2{Gz?h㈵>TF     j@N              ?      c                    s   || _ || _|| _|| _|| _|| _|| _|| _|	| _|
| _	|| _
|| _|| _|| _|| _|| _|   t jf ||||d| d S )N)pad_token_idbos_token_ideos_token_idtie_word_embeddings)
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_heads
hidden_actinitializer_rangelayer_norm_eps	use_cache
rope_thetarope_scalingqk_layernormhidden_dropoutattention_dropoutpartial_rotary_factor_rope_scaling_validationsuper__init__)selfr   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r   r   r   kwargs	__class__ v/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/persimmon/configuration_persimmon.pyr(   ^   s2    zPersimmonConfig.__init__c                 C   s   | j dkrdS t| j tr(t| j dkr8td| j  | j dd}| j dd}|dksd|dkrrtd| |dkst|tr|dkrtd	| dS )
z<
        Validate the `rope_scaling` configuration.
        Nr   zS`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, got typefactor)ZlinearZdynamiczF`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got g      ?z8`rope_scaling`'s factor field must be an float > 1, got )r!   
isinstancedictlen
ValueErrorgetfloat)r)   Zrope_scaling_typeZrope_scaling_factorr-   r-   r.   r&      s    

z(PersimmonConfig._rope_scaling_validation)r   r   r   r   r	   r
   r   r   r   TFr   NTr   r   r   Nr   r   )	__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferencer(   r&   __classcell__r-   r-   r+   r.   r      s2   >                    2r   N)
r:   Zconfiguration_utilsr   utilsr   Z
get_loggerr7   loggerZ'PERSIMMON_PRETRAINED_CONFIG_ARCHIVE_MAPr   r-   r-   r-   r.   <module>   s   
 