U
    ,È-eè  ã                   @   sH   d Z ddlmZ ddlmZ e e¡ZdddddœZG d	d
„ d
eƒZ	dS )z Splinter model configurationé   )ÚPretrainedConfig)ÚloggingzAhttps://huggingface.co/tau/splinter-base/resolve/main/config.jsonzFhttps://huggingface.co/tau/splinter-base-qass/resolve/main/config.jsonzBhttps://huggingface.co/tau/splinter-large/resolve/main/config.jsonzGhttps://huggingface.co/tau/splinter-large-qass/resolve/main/config.json)ztau/splinter-baseztau/splinter-base-qassztau/splinter-largeztau/splinter-large-qassc                       s&   e Zd ZdZdZd‡ fdd„	Z‡  ZS )ÚSplinterConfigai  
    This is the configuration class to store the configuration of a [`SplinterModel`]. It is used to instantiate an
    Splinter model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Splinter
    [tau/splinter-base](https://huggingface.co/tau/splinter-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the Splinter model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`SplinterModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimension of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`SplinterModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        question_token_id (`int`, *optional*, defaults to 104):
            The id of the `[QUESTION]` token.

    Example:

    ```python
    >>> from transformers import SplinterModel, SplinterConfig

    >>> # Initializing a Splinter tau/splinter-base style configuration
    >>> configuration = SplinterConfig()

    >>> # Initializing a model from the tau/splinter-base style configuration
    >>> model = SplinterModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zsplinteré:w  é   é   é   Úgeluçš™™™™™¹?é   é   ç{®Gáz”?çê-™—q=Té    éh   c                    sn   t ƒ jf d|i|—Ž || _|	| _|| _|| _|| _|| _|| _|| _	|| _
|| _|
| _|| _|| _|| _d S )NÚpad_token_id)ÚsuperÚ__init__Ú
vocab_sizeÚmax_position_embeddingsÚhidden_sizeÚnum_hidden_layersÚnum_attention_headsÚintermediate_sizeÚ
hidden_actÚhidden_dropout_probÚattention_probs_dropout_probÚinitializer_rangeÚtype_vocab_sizeÚlayer_norm_epsÚ	use_cacheÚquestion_token_id)Úselfr   r   r   r   r   r   r   r   r   r   r   r   r    r   r!   Úkwargs©Ú	__class__© út/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/splinter/configuration_splinter.pyr   ]   s    zSplinterConfig.__init__)r   r   r   r   r   r	   r
   r
   r   r   r   r   Tr   r   )Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typer   Ú__classcell__r&   r&   r$   r'   r       s$   :               ðr   N)
r+   Zconfiguration_utilsr   Úutilsr   Z
get_loggerr(   ÚloggerZ&SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAPr   r&   r&   r&   r'   Ú<module>   s   
ü	