U
    ,-e                     @   sz   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 e
eZdd	d
dZG dd deZG dd deZdS )z  SqueezeBERT model configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingzOhttps://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/config.jsonzLhttps://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/config.jsonzUhttps://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/config.json)zsqueezebert/squeezebert-uncasedzsqueezebert/squeezebert-mnliz%squeezebert/squeezebert-mnli-headlessc                       s*   e Zd ZdZeZdZd fdd	Z  ZS )SqueezeBertConfigah  
    This is the configuration class to store the configuration of a [`SqueezeBertModel`]. It is used to instantiate a
    SqueezeBERT model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the SqueezeBERT
    [squeezebert/squeezebert-uncased](https://huggingface.co/squeezebert/squeezebert-uncased) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the SqueezeBERT model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`SqueezeBertModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):

        pad_token_id (`int`, *optional*, defaults to 0):
            The ID of the token in the word embedding to use as padding.
        embedding_size (`int`, *optional*, defaults to 768):
            The dimension of the word embedding vectors.

        q_groups (`int`, *optional*, defaults to 4):
            The number of groups in Q layer.
        k_groups (`int`, *optional*, defaults to 4):
            The number of groups in K layer.
        v_groups (`int`, *optional*, defaults to 4):
            The number of groups in V layer.
        post_attention_groups (`int`, *optional*, defaults to 1):
            The number of groups in the first feed forward network layer.
        intermediate_groups (`int`, *optional*, defaults to 4):
            The number of groups in the second feed forward network layer.
        output_groups (`int`, *optional*, defaults to 4):
            The number of groups in the third feed forward network layer.

    Examples:

    ```python
    >>> from transformers import SqueezeBertConfig, SqueezeBertModel

    >>> # Initializing a SqueezeBERT configuration
    >>> configuration = SqueezeBertConfig()

    >>> # Initializing a model (with random weights) from the configuration above
    >>> model = SqueezeBertModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```

    Attributes: pretrained_config_archive_map (Dict[str, str]): A dictionary containing all the available pre-trained
    checkpoints.
    Zsqueezebert:w           gelu皙?      {Gz?-q=r         c                    s   t  jf d|i| || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _|| _|| _|| _|| _d S )Npad_token_id)super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epsembedding_sizeq_groupsk_groupsv_groupspost_attention_groupsintermediate_groupsoutput_groups)selfr   r   r   r   r   r   r   r   r    r!   r"   r#   r   r$   r%   r&   r'   r(   r)   r*   kwargs	__class__ z/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/squeezebert/configuration_squeezebert.pyr   s   s(    zSqueezeBertConfig.__init__)r	   r
   r   r   r   r   r   r   r   r   r   r   r   r
   r   r   r   r   r   r   )	__name__
__module____qualname____doc__)SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAPZpretrained_config_archive_mapZ
model_typer   __classcell__r/   r/   r-   r0   r   %   s0   J                    r   c                   @   s.   e Zd Zeeeeeef f dddZdS )SqueezeBertOnnxConfig)returnc                 C   s<   | j dkrdddd}n
ddd}td|fd|fd	|fgS )
Nzmultiple-choicebatchchoicesequence)r   r   r   )r   r   Z	input_idsZattention_maskZtoken_type_ids)taskr   )r+   Zdynamic_axisr/   r/   r0   inputs   s    

zSqueezeBertOnnxConfig.inputsN)r1   r2   r3   propertyr   strintr=   r/   r/   r/   r0   r7      s   r7   N)r4   collectionsr   typingr   Zconfiguration_utilsr   Zonnxr   utilsr   Z
get_loggerr1   loggerr5   r   r7   r/   r/   r/   r0   <module>   s   
~