U
    ,-e?                     @   s   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ dd	lmZmZ eeZd
diZG dd deeZG dd de
ZdS )z% Swin Transformer model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)logging)BackboneConfigMixin*get_aligned_output_features_output_indicesz&microsoft/swin-tiny-patch4-window7-224zVhttps://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.jsonc                       sf   e Zd ZdZdZdddZdddd	d
d
dd
gddddgdddddddddddddf fdd	Z  ZS )
SwinConfigaI  
    This is the configuration class to store the configuration of a [`SwinModel`]. It is used to instantiate a Swin
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Swin
    [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224)
    architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 4):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        embed_dim (`int`, *optional*, defaults to 96):
            Dimensionality of patch embedding.
        depths (`list(int)`, *optional*, defaults to [2, 2, 6, 2]):
            Depth of each layer in the Transformer encoder.
        num_heads (`list(int)`, *optional*, defaults to [3, 6, 12, 24]):
            Number of attention heads in each layer of the Transformer encoder.
        window_size (`int`, *optional*, defaults to 7):
            Size of windows.
        mlp_ratio (`float`, *optional*, defaults to 4.0):
            Ratio of MLP hidden dimensionality to embedding dimensionality.
        qkv_bias (`bool`, *optional*, defaults to True):
            Whether or not a learnable bias should be added to the queries, keys and values.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings and encoder.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        drop_path_rate (`float`, *optional*, defaults to 0.1):
            Stochastic depth rate.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
            `"selu"` and `"gelu_new"` are supported.
        use_absolute_embeddings (`bool`, *optional*, defaults to False):
            Whether or not to add absolute position embeddings to the patch embeddings.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        encoder_stride (`int`, `optional`, defaults to 32):
            Factor to increase the spatial resolution by in the decoder head for masked image modeling.
        out_features (`List[str]`, *optional*):
            If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
            (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
            corresponding stages. If unset and `out_indices` is unset, will default to the last stage.
        out_indices (`List[int]`, *optional*):
            If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
            many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
            If unset and `out_features` is unset, will default to the last stage.

    Example:

    ```python
    >>> from transformers import SwinConfig, SwinModel

    >>> # Initializing a Swin microsoft/swin-tiny-patch4-window7-224 style configuration
    >>> configuration = SwinConfig()

    >>> # Initializing a model (with random weights) from the microsoft/swin-tiny-patch4-window7-224 style configuration
    >>> model = SwinModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zswin	num_heads
num_layers)Znum_attention_headsZnum_hidden_layers      r   `                  g      @Tg        g?ZgeluFg{Gz?gh㈵>    Nc                    s   t  jf | || _|| _|| _|| _|| _t|| _|| _	|| _
|| _|	| _|
| _|| _|| _|| _|| _|| _|| _|| _t|dt|d   | _dgdd tdt|d D  | _t||| jd\| _| _d S )Nr      stemc                 S   s   g | ]}d | qS )Zstage ).0idxr   r   l/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/swin/configuration_swin.py
<listcomp>   s     z'SwinConfig.__init__.<locals>.<listcomp>)out_featuresout_indicesstage_names)super__init__
image_size
patch_sizenum_channels	embed_dimdepthslenr   r   window_size	mlp_ratioqkv_biashidden_dropout_probattention_probs_dropout_probdrop_path_rate
hidden_actuse_absolute_embeddingslayer_norm_epsinitializer_rangeencoder_strideintZhidden_sizeranger!   r   Z_out_featuresZ_out_indices)selfr$   r%   r&   r'   r(   r   r*   r+   r,   r-   r.   r/   r0   r1   r3   r2   r4   r   r    kwargs	__class__r   r   r#   s   s4    
$  zSwinConfig.__init__)__name__
__module____qualname____doc__Z
model_typeZattribute_mapr#   __classcell__r   r   r9   r   r   &   s2   E

r   c                   @   sJ   e Zd ZedZeeeee	ef f dddZ
eedddZdS )SwinOnnxConfigz1.11)returnc                 C   s   t ddddddfgS )NZpixel_valuesbatchr&   heightwidth)r   r   r   r   r   r7   r   r   r   inputs   s    zSwinOnnxConfig.inputsc                 C   s   dS )Ng-C6?r   rE   r   r   r   atol_for_validation   s    z"SwinOnnxConfig.atol_for_validationN)r;   r<   r=   r   parseZtorch_onnx_minimum_versionpropertyr   strr5   rF   floatrG   r   r   r   r   r@      s
   
 r@   N)r>   collectionsr   typingr   	packagingr   Zconfiguration_utilsr   Zonnxr   utilsr	   Zutils.backbone_utilsr
   r   Z
get_loggerr;   loggerZ"SWIN_PRETRAINED_CONFIG_ARCHIVE_MAPr   r@   r   r   r   r   <module>   s   
 