U
    ,È-e³  ã                   @   sB   d Z ddlmZ ddlmZ e e¡ZddiZG dd„ deƒZ	dS )	z' Swinv2 Transformer model configurationé   )ÚPretrainedConfig)Úloggingz(microsoft/swinv2-tiny-patch4-window8-256zXhttps://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.jsonc                       sb   e Zd ZdZdZdddœZdddd	d
d
dd
gddddgdddddddddddf‡ fdd„	Z‡  ZS )ÚSwinv2Configaœ  
    This is the configuration class to store the configuration of a [`Swinv2Model`]. It is used to instantiate a Swin
    Transformer v2 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the Swin Transformer v2
    [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256)
    architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 4):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        embed_dim (`int`, *optional*, defaults to 96):
            Dimensionality of patch embedding.
        depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`):
            Depth of each layer in the Transformer encoder.
        num_heads (`list(int)`, *optional*, defaults to `[3, 6, 12, 24]`):
            Number of attention heads in each layer of the Transformer encoder.
        window_size (`int`, *optional*, defaults to 7):
            Size of windows.
        mlp_ratio (`float`, *optional*, defaults to 4.0):
            Ratio of MLP hidden dimensionality to embedding dimensionality.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether or not a learnable bias should be added to the queries, keys and values.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings and encoder.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        drop_path_rate (`float`, *optional*, defaults to 0.1):
            Stochastic depth rate.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
            `"selu"` and `"gelu_new"` are supported.
        use_absolute_embeddings (`bool`, *optional*, defaults to `False`):
            Whether or not to add absolute position embeddings to the patch embeddings.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        encoder_stride (`int`, `optional`, defaults to 32):
            Factor to increase the spatial resolution by in the decoder head for masked image modeling.

    Example:

    ```python
    >>> from transformers import Swinv2Config, Swinv2Model

    >>> # Initializing a Swinv2 microsoft/swinv2-tiny-patch4-window8-256 style configuration
    >>> configuration = Swinv2Config()

    >>> # Initializing a model (with random weights) from the microsoft/swinv2-tiny-patch4-window8-256 style configuration
    >>> model = Swinv2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zswinv2Ú	num_headsÚ
num_layers)Znum_attention_headsZnum_hidden_layerséà   é   r   é`   é   é   é   é   é   g      @Tg        gš™™™™™¹?ZgeluFg{®Gáz”?gñhãˆµøä>é    c                    s¢   t ƒ jf |Ž || _|| _|| _|| _|| _t|ƒ| _|| _	|| _
|| _|	| _|
| _|| _|| _|| _|| _|| _|| _|| _t|dt|ƒd   ƒ| _d| _d S )Nr
   é   )é    r   r   r   )ÚsuperÚ__init__Ú
image_sizeÚ
patch_sizeÚnum_channelsÚ	embed_dimÚdepthsÚlenr   r   Úwindow_sizeÚ	mlp_ratioÚqkv_biasÚhidden_dropout_probÚattention_probs_dropout_probÚdrop_path_rateÚ
hidden_actÚuse_absolute_embeddingsÚlayer_norm_epsÚinitializer_rangeÚencoder_strideÚintZhidden_sizeZpretrained_window_sizes)Úselfr   r   r   r   r   r   r   r   r   r   r   r   r    r!   r#   r"   r$   Úkwargs©Ú	__class__© úp/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/swinv2/configuration_swinv2.pyr   c   s*    
zSwinv2Config.__init__)Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typeZattribute_mapr   Ú__classcell__r*   r*   r(   r+   r      s.   =þ

îr   N)
r/   Zconfiguration_utilsr   Úutilsr   Z
get_loggerr,   ÚloggerZ$SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAPr   r*   r*   r*   r+   Ú<module>   s   
þ