U
    ,È-ez  ã                   @   sB   d Z ddlmZ ddlmZ e e¡ZddiZG dd„ deƒZ	dS )	z TrOCR model configurationé   )ÚPretrainedConfig)Úloggingz microsoft/trocr-base-handwrittenzPhttps://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.jsonc                       s8   e Zd ZdZdZdgZddddœZd‡ fdd„	Z‡  ZS )ÚTrOCRConfigaÆ  
    This is the configuration class to store the configuration of a [`TrOCRForCausalLM`]. It is used to instantiate an
    TrOCR model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the TrOCR
    [microsoft/trocr-base-handwritten](https://huggingface.co/microsoft/trocr-base-handwritten) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50265):
            Vocabulary size of the TrOCR model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`TrOCRForCausalLM`].
        d_model (`int`, *optional*, defaults to 1024):
            Dimensionality of the layers and the pooler layer.
        decoder_layers (`int`, *optional*, defaults to 12):
            Number of decoder layers.
        decoder_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer decoder.
        decoder_ffn_dim (`int`, *optional*, defaults to 4096):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the pooler. If string, `"gelu"`, `"relu"`,
            `"silu"` and `"gelu_new"` are supported.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        init_std (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        decoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        scale_embedding (`bool`, *optional*, defaults to `False`):
            Whether or not to scale the word embeddings by sqrt(d_model).
        use_learned_position_embeddings (`bool`, *optional*, defaults to `True`):
            Whether or not to use learned position embeddings. If not, sinusoidal position embeddings will be used.
        layernorm_embedding (`bool`, *optional*, defaults to `True`):
            Whether or not to use a layernorm after the word + position embeddings.

    Example:

    ```python
    >>> from transformers import TrOCRConfig, TrOCRForCausalLM

    >>> # Initializing a TrOCR-base style configuration
    >>> configuration = TrOCRConfig()

    >>> # Initializing a model (with random weights) from the TrOCR-base style configuration
    >>> model = TrOCRForCausalLM(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZtrocrZpast_key_valuesÚdecoder_attention_headsÚd_modelÚdecoder_layers)Znum_attention_headsZhidden_sizeZnum_hidden_layerséYÄ  é   é   é   é   Úgelué   çš™™™™™¹?ç        é   ç{®Gáz”?TFé   é    c                    s€   || _ || _|| _|| _|| _|| _|| _|| _|	| _|
| _	|| _
|| _|| _|| _|| _|| _tƒ jf ||||dœ|—Ž d S )N)Úpad_token_idÚbos_token_idÚeos_token_idÚdecoder_start_token_id)Ú
vocab_sizer   r   r   Údecoder_ffn_dimÚactivation_functionÚmax_position_embeddingsÚdropoutÚattention_dropoutÚactivation_dropoutÚinit_stdÚdecoder_layerdropÚ	use_cacheÚscale_embeddingÚuse_learned_position_embeddingsÚlayernorm_embeddingÚsuperÚ__init__)Úselfr   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r   r   r   Úkwargs©Ú	__class__© ún/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/trocr/configuration_trocr.pyr'   f   s0    üûzTrOCRConfig.__init__)r   r	   r
   r   r   r   r   r   r   r   r   r   r   TFTTr   r   r   )	Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typeZkeys_to_ignore_at_inferenceZattribute_mapr'   Ú__classcell__r,   r,   r*   r-   r      s8   >ý                    ër   N)
r1   Zconfiguration_utilsr   Úutilsr   Z
get_loggerr.   ÚloggerZ#TROCR_PRETRAINED_CONFIG_ARCHIVE_MAPr   r,   r,   r,   r-   Ú<module>   s   
þ