U
    ,-ed                     @   sF   d Z ddlmZ ddlmZ ddlmZ eeZ	G dd deZ
dS )	z UperNet model configuration   )PretrainedConfig)logging   )CONFIG_MAPPINGc                       sD   e Zd ZdZdZddddddd	gd
ddddddf fdd	Z  ZS )UperNetConfiga	  
    This is the configuration class to store the configuration of an [`UperNetForSemanticSegmentation`]. It is used to
    instantiate an UperNet model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the UperNet
    [openmmlab/upernet-convnext-tiny](https://huggingface.co/openmmlab/upernet-convnext-tiny) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        backbone_config (`PretrainedConfig` or `dict`, *optional*, defaults to `ResNetConfig()`):
            The configuration of the backbone model.
        hidden_size (`int`, *optional*, defaults to 512):
            The number of hidden units in the convolutional layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`):
            Pooling scales used in Pooling Pyramid Module applied on the last feature map.
        use_auxiliary_head (`bool`, *optional*, defaults to `True`):
            Whether to use an auxiliary head during training.
        auxiliary_loss_weight (`float`, *optional*, defaults to 0.4):
            Weight of the cross-entropy loss of the auxiliary head.
        auxiliary_channels (`int`, *optional*, defaults to 256):
            Number of channels to use in the auxiliary head.
        auxiliary_num_convs (`int`, *optional*, defaults to 1):
            Number of convolutional layers to use in the auxiliary head.
        auxiliary_concat_input (`bool`, *optional*, defaults to `False`):
            Whether to concatenate the output of the auxiliary head with the input before the classification layer.
        loss_ignore_index (`int`, *optional*, defaults to 255):
            The index that is ignored by the loss function.

    Examples:

    ```python
    >>> from transformers import UperNetConfig, UperNetForSemanticSegmentation

    >>> # Initializing a configuration
    >>> configuration = UperNetConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = UperNetForSemanticSegmentation(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZupernetNi   g{Gz?   r   r      Tg?i     F   c                    s   t  jf | |d kr8td td ddddgd}n&t|tr^|d}t| }||}|| _	|| _
|| _|| _|| _|| _|| _|| _|	| _|
| _|| _d S )	NzX`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.ZresnetZstage1Zstage2Zstage3Zstage4)Zout_features
model_type)super__init__loggerinfor   
isinstancedictget	from_dictbackbone_confighidden_sizeinitializer_rangepool_scalesuse_auxiliary_headauxiliary_loss_weightauxiliary_in_channelsauxiliary_channelsauxiliary_num_convsauxiliary_concat_inputloss_ignore_index)selfr   r   r   r   r   r   r   r   r   r   r   kwargsZbackbone_model_typeZconfig_class	__class__ r/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/upernet/configuration_upernet.pyr   J   s&    



zUperNetConfig.__init__)__name__
__module____qualname____doc__r   r   __classcell__r#   r#   r!   r$   r      s   -
r   N)r(   Zconfiguration_utilsr   utilsr   Zauto.configuration_autor   Z
get_loggerr%   r   r   r#   r#   r#   r$   <module>   s
   
