U
    ,-e>                     @   sB   d Z ddlmZ ddlmZ eeZddiZG dd deZ	dS )	z VideoMAE model configuration   )PretrainedConfig)loggingzMCG-NJU/videomae-basezEhttps://huggingface.co/MCG-NJU/videomae-base/resolve/main/config.jsonc                       s&   e Zd ZdZdZd fdd	Z  ZS )VideoMAEConfigae  
    This is the configuration class to store the configuration of a [`VideoMAEModel`]. It is used to instantiate a
    VideoMAE model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the VideoMAE
    [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        num_frames (`int`, *optional*, defaults to 16):
            The number of frames in each video.
        tubelet_size (`int`, *optional*, defaults to 2):
            The number of tubelets.
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.
        use_mean_pooling (`bool`, *optional*, defaults to `True`):
            Whether to mean pool the final hidden states instead of using the final hidden state of the [CLS] token.
        decoder_num_attention_heads (`int`, *optional*, defaults to 6):
            Number of attention heads for each attention layer in the decoder.
        decoder_hidden_size (`int`, *optional*, defaults to 384):
            Dimensionality of the decoder.
        decoder_num_hidden_layers (`int`, *optional*, defaults to 4):
            Number of hidden layers in the decoder.
        decoder_intermediate_size (`int`, *optional*, defaults to 1536):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the decoder.
        norm_pix_loss (`bool`, *optional*, defaults to `True`):
            Whether to normalize the target patch pixels.

    Example:

    ```python
    >>> from transformers import VideoMAEConfig, VideoMAEModel

    >>> # Initializing a VideoMAE videomae-base style configuration
    >>> configuration = VideoMAEConfig()

    >>> # Randomly initializing a model from the configuration
    >>> model = VideoMAEModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zvideomae      r               gelu        {Gz?-q=T           c                    s   t  jf | || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _d S )N)super__init__
image_size
patch_sizenum_channels
num_framestubelet_sizehidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangelayer_norm_epsqkv_biasuse_mean_poolingdecoder_num_attention_headsdecoder_hidden_sizedecoder_num_hidden_layersdecoder_intermediate_sizenorm_pix_loss)selfr   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   kwargs	__class__ t/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/transformers/models/videomae/configuration_videomae.pyr   c   s,    zVideoMAEConfig.__init__)r   r   r   r   r   r   r	   r	   r
   r   r   r   r   r   TTr   r   r   r   T)__name__
__module____qualname____doc__Z
model_typer   __classcell__r.   r.   r,   r/   r      s0   D                     r   N)
r3   Zconfiguration_utilsr   utilsr   Z
get_loggerr0   loggerZ&VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAPr   r.   r.   r.   r/   <module>   s   
 