
import os
import sys
import time
from pathlib import Path
import streamlit as st

import cv2
import torch
import torch.backends.cudnn as cudnn

sys.path.insert(0, './yolov5') # Path for internal module without changing base

from yolov5.models.common import DetectMultiBackend
from yolov5.utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from yolov5.utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
                           increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
from yolov5.utils.general import set_logging
from yolov5.utils.plots import Annotator, colors, save_one_box, plot_one_box
from yolov5.utils.torch_utils import select_device, time_sync


from deep_sort.utils.parser import get_config
from deep_sort.deep_sort import DeepSort

from graphs import bbox_rel,draw_boxes
from collections import Counter

import psutil
import subprocess

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

def get_gpu_memory():
    result = subprocess.check_output(
        [
            'nvidia-smi', '--query-gpu=memory.used',
            '--format=csv,nounits,noheader'
        ], encoding='utf-8')
    gpu_memory = [int(x) for x in result.strip().split('\n')]
    return gpu_memory[0]

@torch.no_grad()
def detect(weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
        source=ROOT / 'yolov5/data/images',  # file/dir/URL/glob, 0 for webcam
        data=ROOT / 'yolov5/data/coco128.yaml',  # dataset.yaml path
        stframe=None,
        #stgraph=None,
        kpi1_text="",
        kpi2_text="", kpi3_text="",
        js1_text="",js2_text="",js3_text="",
        imgsz=(640, 640),  # inference size (height, width)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project=ROOT / 'runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=1,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        dnn=False,
        display_labels=False,
        config_deepsort="deep_sort/configs/deep_sort.yaml", #Deep Sort configuration
        conf_thres_drift = 0.75,
        save_poor_frame__ = False,
        inf_ov_1_text="", inf_ov_2_text="",inf_ov_3_text="", inf_ov_4_text="",
        fps_warn="",fps_drop_warn_thresh=8  
        ):
    save_img = not nosave and not source.endswith('.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://', 'https://'))

    ## initialize deepsort
    cfg = get_config()
    cfg.merge_from_file(config_deepsort)
    deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
                        max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
                        nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
                        max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
                        use_cuda=True)
    
    
    # Directories
    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
    if save_poor_frame__:
        try:
            os.mkdir("drift_frames")
        except:
            print("Folder exists, overwriting...")

    # Initialize
    set_logging()
    device = select_device(device)
    half &= device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
    stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Half
    half &= (pt or jit or onnx or engine) and device.type != 'cpu'  # FP16 supported on limited backends with CUDA
    if pt or jit:
        model.model.half() if half else model.model.float()

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()

    # Dataloader
    if webcam:
        #view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs
    
    # Run inference
    t0 = time.time()
    
    dt, seen = [0.0, 0.0, 0.0], 0
    prev_time = time.time()
    selected_names = names.copy()
    global_graph_dict = dict()
    global_drift_dict = dict()
    test_drift = []
    frame_num = -1
    poor_perf_frame_counter=0
    mapped_ = dict()
    min_FPS = 10000
    max_FPS = -1
    for path, im, im0s, vid_cap, s in dataset:
        frame_num = frame_num+1
        t1 = time_sync()
        im = torch.from_numpy(im).to(device)
        im = im.half() if half else im.float()  # uint8 to fp16/32
        im /= 255  # 0 - 255 to 0.0 - 1.0
        if len(im.shape) == 3:
            im = im[None]  # expand for batch dim
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
        pred = model(im, augment=augment, visualize=visualize)
        t3 = time_sync()
        dt[1] += t3 - t2

        # NMS
        pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
        dt[2] += time_sync() - t3

        # Process predictions
        class_count = 0
        
        drift_dict = dict()
        
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f'{i}: '
            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
            s += '%gx%g ' % im.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                names_ = []
                cnt = []
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string
                    names_.append(names[int(c)])
                    cnt.append(int(n.detach().cpu().numpy()))
                mapped_.update(dict(zip(names_, cnt)))

                global_graph_dict = Counter(global_graph_dict) + Counter(mapped_)
                
                bbox_xywh = []
                confs = []
                # Adapt detections to deep sort input format
                for *xyxy, conf, cls in det:
                    x_c, y_c, bbox_w, bbox_h = bbox_rel(*xyxy)
                    obj = [x_c, y_c, bbox_w, bbox_h]
                    bbox_xywh.append(obj)
                    confs.append([conf.item()])
                    # print("conf : {0}, conf_t : {1}".format(conf, conf_thres))
                    if conf<conf_thres_drift:
                        if names[int(cls)] not in test_drift:
                            test_drift.append(names[int(cls)])
                        if save_poor_frame__:
                            cv2.imwrite("drift_frames/frame_{0}.png".format(frame_num), im0)
                            poor_perf_frame_counter+=1
                    # print(type(conf_thres))
                
                xywhs = torch.Tensor(bbox_xywh)
                confss = torch.Tensor(confs)
                
                # Pass detections to deepsort
                outputs = deepsort.update(xywhs, confss, im0)
                
                # draw boxes for visualization
                if len(outputs) > 0:
                    # print("Outputs :", outputs)
                    bbox_xyxy = outputs[:, :4]
                    identities = outputs[:, -1]
                    draw_boxes(im0, bbox_xyxy, identities)

                # Write MOT compliant results to file
                if save_txt and len(outputs) != 0:
                    for j, output in enumerate(outputs):
                        bbox_left = output[0]
                        bbox_top = output[1]
                        bbox_w = output[2]
                        bbox_h = output[3]
                        identity = output[-1]
                        with open(txt_path, 'a') as f:
                            f.write(('%g ' * 10 + '\n') % (frame_idx, identity, bbox_left,
                                                           bbox_top, bbox_w, bbox_h, -1, -1, -1, -1))  # label format

                # Write results Label
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img or display_labels:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                        plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=line_thickness)
                        if save_crop:
                            save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
            
            else:
                deepsort.increment_ages()
                
            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += '.mp4'
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer.write(im0)
            
            curr_time = time.time()
            fps_ = curr_time - prev_time
            fps_ = round(1/round(fps_, 3),1)
            prev_time = curr_time
        
        js1_text.write(str(psutil.virtual_memory()[2])+"%")
        js2_text.write(str(psutil.cpu_percent())+'%')
        try:
            js3_text.write(str(get_gpu_memory())+' MB')
        except:
            js3_text.write(str('NA'))


        kpi1_text.write(str(fps_)+' FPS')
        if fps_ < fps_drop_warn_thresh:
            fps_warn.warning(f"FPS dropped below {fps_drop_warn_thresh}")
        kpi2_text.write(mapped_)
        kpi3_text.write(global_graph_dict)

        inf_ov_1_text.write(test_drift)
        inf_ov_2_text.write(poor_perf_frame_counter)

        if fps_<min_FPS:
            inf_ov_3_text.write(fps_)
            min_FPS = fps_
        if fps_>max_FPS:
            inf_ov_4_text.write(fps_)
            max_FPS = fps_ 

        stframe.image(im0, channels="BGR", use_column_width=True)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)
    
    if vid_cap:
        vid_cap.release()
